新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 高压并联式混合型电网高次谐波有源滤波装置

高压并联式混合型电网高次谐波有源滤波装置

作者:时间:2010-06-02来源:网络收藏


3.2功率开关器件

  功率开关器件应具有如下特点:①在阻断状态下能承受。②在导通状态下具有高的电流密度和低的导通压降。③具有足够短的导通时间和关断时间,并能承受高的di/dt和dU/dt。IGBT既具有大功率场效应管(MOSFET)的输入阻抗高、开关速度快的优点,又具有大功率晶体管(GTR)耐压高、流过电流大的优点;其栅极为电压驱动,所需驱动功率小,开关损耗小,工作频率高,是目前应用于电力器主回路的比较理想的大功率开关器件。目前的应用水平已达到3.3kV/1.2kA。更重要的是,IGBT已经实现了规模化工业大批量生产,其售价已与GTR差不多,这为大批量的应用提供了充足的来源。IGBT的主要缺点是内阻大,通态压降大,因而导通损耗较大。为此要选择合适的工作电压,以降低导通损耗。因此经权衡,本课题选用IGBT为主回路的开关元件。

3.3IGBT的驱动电路设计

  IGBT工作状态的好坏很大程度上取决于驱动电路性能的优劣。驱动电路往往也是大容量PWM技术的关键。本课题采用双通道带互锁的驱动器的设计,非常适合于桥臂连接IGBT的驱动。电路中设置的软关断功能可以自动地增加IGBT的关断时间,并同时可减少直流母线电压的过冲量。驱动电路初级和次级之间采取铁氧体变压器进行隔离,因而对驱动电源的要求不用独立隔离,而可与控制电路共同使用一个电源,简化了电源的设置。驱动电路中设置了一互锁电路,以防半桥的2个IGBT元件的同时导通,通过调节接入的附加电阻,可以方便地调节其死区时间。驱动电路中还设有错误信号存储单元,如果有一个IGBT元件发生短路,或者驱动电源低于额定值,便可通过错误信号存储单元把此信号送到外部控制电路,以实现系统的保护动作。

  电路布线寄生的杂散电感是所有大电流开关电源中的关键问题。快速的关断过程,会引起与所储能量和开关速度成比例的过电压冲击。为了防止过电压的损害,需要选择冗余量较大的器件,但会增加整机成本;高的开关电压也会增加系统损耗,降低整机效率。完全消除杂散电抗是不可能的,但可采取措施最大限度地减少线路的杂散电感,可以缩小整个电路的有效回路面积,如采用分层布线结构。可增加栅极串联电阻Rg来抑制dU/dt;降低开关速度,可显著降低过电压尖峰,但增加了开关损耗。实现的方法是在断开IGBT时以接近0Ω的门极阻抗释放门极电荷,直到Uce达到主回路电压值时,再将门极释放路径切换到另一路阻抗通路。

3.4注入变压器

  电力器用的注入变压器,承担着把大功率的电流低损耗和无相移地注入10kV线路,以达到在10kV级的公共连接点处补偿非线性负荷所产生的电流。为了使注入变压器的损耗降低到最大限度,在铁心材料选择、绕组结构及绕制工艺上都应采用相应的措施。

3.5电流检测及补偿信号控制的数字模拟混合技术

  能否快速精确地检测出电力线路中需要补偿的谐波分量以及良好的动态跟踪性能,是电力的关键。这也直接决定了的整机性能。

  采用瞬时无功功率p-Q法及其演化改进的各种算法,只能用于生成补偿基波无功与所有各次谐波电流的指令信号;同步旋转坐标变换d-Q法及基于改进的带通滤波器提取基波分量法与p-Q法的功能一样;而采用陷波器消除基波分量的方法,同样只能用于补偿所有的各次谐波。在考虑到有源电力滤波器的容量有一定限制,采用无源滤波器的结构环境中,要求可以有选择性地补偿指定次数或指定若干次谐波需要补偿的谐波电流,在这方面可以使有源电力滤波器发挥最优的谐波补偿能力,同时也使无源滤波器对某特定次数的谐波电流不会产生过负荷或谐波放大等[2]。

  通过检测非线性负荷端的谐波电流,经过运算后得到谐波电流补偿指令信号,控制有源滤波器主回路产生与负荷谐波电流大小相等、方向相反的电流,以补偿线路中一部分或全部的谐波电流。由于高速的DSP的出现,近年来价格又不断下降,因此采用全数字化的采样、分析、运算来生成有源电力滤波器的补偿指令信号,已不成问题。

  采用高速DSP(TMS320F2407A)来完成快速多通道A/D转换,通过FFT等数字式加模拟式计算,可得到与补偿电流相对应的PWM信号,用以驱动主回路的开关器件。测量控制器采用高速DSP和工业控制机相结合来实现,其中DSP用于数据采集、补偿量计算分析和构成;工业控制机(MIC-2000)用于调节、控制、通信和保护。这种数字―模拟式测量控制器与全数字式控制器相比具有测量准确、调节灵敏、响应速度快的优点。负荷电流的检测和分析采用数字方法来实现,可以保证系统的检测分析精确度和稳定性。补偿电流指令生成采用模拟电路来实现,可以实现补偿电流跟踪的快速响应,较好地消除各开关模块之间的环流。

3.6数字化数据采样测量和控制采用预整形同步采样技术

  预整形同步采样技术可严格保证谐波测量检测的高准确度,保证输出补偿信号与系统电压严格同步,从而保证了有源滤波器补偿电流的快速响应和准确性。

  采用锁相环路来控制采样脉冲的定时和速率,是一种比较实用的同步采样方法。为了消除畸变波形对同步采样电路工作的影响,可以在同步信号进入锁相环路之前采用预整形的措施,以保证在锁相环路中进行比较时有较高的定时精度。采用预整形同步采样技术来减少同步采样中的同步误差,可以简便地消除积分均值运算中的截断误差或FFT处理的泄漏效应所造成的误差。它尤其适合于对任何非正弦波形的周期信号的测量和实时处理。其特点是同步源信号的幅度变化允许范围宽,高准确度的定时和同步性能不受信号波形畸变的影响,多种同步信号源可方便地由程序选择等。

3.7软件系统

  装置的软件系统包括运行和调试程序2大部分。运行程序是软件的主体部分,装置的大部分功能是由运行程序来实现的。为便于程序的开发和管理,软件采用模块化方式设计。调试程序主要实现软件及硬件主要功能模块的性能调试和整定值的写入与修改[4]。

3.8有源滤波器设计过程的电磁兼容性管理

  并联式有源滤波器自身结构由交流和直流电力系统、测量、运算和控制等弱电(电子)系统构成。为避免电子系统受到各种干扰,在设计研制过程中,应进行相应的电磁测量和分析,以便对电力系统或电子系统采取措施。

  电磁兼容性的管理主要是围绕构成电磁干扰的三要素(即电磁干扰源、干扰耦合途径和敏感设备)来进行的。其管理的内容包括:①电磁干扰产生的机理,如何抑制电磁骚扰源的发射。②电磁干扰以何种方式和途径耦合(或传导),如何切断电磁干扰的传输途径。③敏感设备对电磁骚扰产生何种影响,如何提高敏感设备的抗干扰能力。高压并联式有源滤波器在运行中,主回路交流接触器的合闸,控制继电器的吸合,IGBT元件的导通和截断等,都会产生不同形式和不同途径的电磁干扰,而测控电子电路回路对这类干扰的呈现最敏感。因此,应根据有关电磁兼容性的标准和规定,合理有效地解决这三要素的问题。

本文引用地址:http://www.eepw.com.cn/article/180786.htm

4滤波补偿装置的仿真运行

  使用电磁暂态程序(ElectroMMagnetic Transients Program,EMTP)和PSpice进行数模信号混合仿真,可以评价有源电力滤波器的效率和控制系统的功能。在未进行物理试验的情况下,采用软件,可以对有源电力滤波器的结构进行评价[5]。采用CHP谐波潮流计算程序,可以进行10kV并联式有源滤波器装置仿真运行和安全校核,优化参数和结构。

  分别按照3种不同的安装位置和控制方法来分析有源滤波器和无源滤波器混合结构的补偿效果。对于每一种结构,仅在谐波滤波效果和串、并联谐振抑制方面进行分析。仿真结果表明,使用有源和无源滤波器相结合的谐波补偿装置的优点为:①能有效地补偿负荷在运行过程中所产生的宽范围的频率变化的谐波电流。②能有效地抑制系统可能产生的并联谐振和串联谐振。

  通过分析3种有源和无源滤波器不同的组合结构形式,其仿真结果表明,总谐波电流补偿法和总电流反馈补偿法都具有良好的谐波补偿特性以及抑制系统并联或串联谐振的能力。仿真中还发现,电源电压的谐波分量可能会引起在有源滤波器和无源滤波器之间的电流振荡,这种现象在实际应用中应注意解决。

  仿真结果还表明,有源滤波器使用的注入变压器的接线方式,最好为D,d或者Y,y接线方式。这样,对于负荷的配电变压器的接线方式就不需要作规定,任意形式的接线方式都可取得预想的补偿效果。否则会因为注入变压器引起的补偿电流的相移而损坏了补偿效果,导致谐波电流的增加。

5装置的特性和工业运行效果

  该套补偿装置安装在某工业区的一35kV变电站。由上级110kV变电站提供35kV线路主供电。该变电站装有2台分列运行的SZ9-8000/35主变压器。根据当地供电局的长期监测,变电站10kV母线电压总畸变率经常超过国家标准GB/T
14945―1993中规定的谐波电压限值(4%),有时甚至达到5%~7%。该变电站的非线性负荷主要是一些钢管厂的直流轧机和高频感应加热炉。直流轧机和高频感应加热炉的主要特征谐波为5、7、11和13次谐波,此外还有2、3、4、6等次谐波。

5.1谐波治理和无功补偿方案

  设计无源5次滤波器一组,安装容量为1500kvar,用于滤去5次谐波电流和补偿所需的基波无功。同时并联高压有源滤波器BHY480/10 1台,用于滤除其他各次谐波电流,而且不输出基波无功,以免无功过补。

5.2装置性能的测量结果和工业投用效果

  鉴定委员会专家测试组对该套装置进行特性测量的结果如下:①有源滤波装置三相输出补偿容量设计值为480kVA,实测的输出补偿容量达到508.1kVA以上。②有源滤波装置空投时的空投损耗为563.8W,为额定补偿容量的0.12%。③有源滤波装置具有快速反应跟踪补偿特性,动态响应时间小于0.3ms。④变电站5号10kV母线电压总畸变率在该套滤波补偿装置投运前的测量值为4.9%~5.9%;在该套装置投入运行后的测量值为1.3%~1.5%。由此可见,10kV母线电压波形得到显著改善,电压波形总畸变率下降为1.5%以下。⑤10kV负荷谐波电流的总补偿率为76.4%。⑥装置投运后系统的功率因数从0.75上升到0.93以上。

  补偿装置投运前后10kV侧线路电流的频谱分析见图3。补偿装置投运前后10kV侧母线电压的谐波总畸变率变化曲线见图4。



图3补偿装置投运前后10kV侧线路电流的频谱分析


图4补偿装置投运前后10kV侧母线电压的谐波总畸变率变化

6结论

  高压并联式谐波有源滤波装置是一种可直挂在10kV系统中使用的新型滤波补偿装置。无源滤波设备有滤除谐波的功能和兼顾系统所需的无功补偿,有源滤波设备对系统的谐波进行有源补偿,具有高度的自适应性,同时可以抑制因系统参数改变而产生的并联或串联谐振,还可以防止无功过补偿等,是现代企业中对含有各种换流装置的非线性负荷进行电力谐波治理和合理补偿无功的设备。

  国家公司于2004年12月在北京召开了该项目的科技成果鉴定会。鉴定意见认为,该装置是我国首次自主研制并投入工业运行的第一套10kV大容量谐波有源滤波装置,填补了国内10kV直挂电网的高次谐波有源滤波装置(GAPF)的空白,其主要技术指标达到了当前国际先进水平,具有广阔的应用前景。可以方便地从三相10kV拓展到单相27.5kV的电压等级,为电铁牵引站的谐波治理工程提供高效的补偿装置。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭