新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 低功耗10位100 MHz流水线A/D转换器设计

低功耗10位100 MHz流水线A/D转换器设计

作者:时间:2010-11-16来源:网络收藏

摘要:介绍了一个10位100 MHz,1.8 V的流水线结构模/数转换器(ADC),该ADC运用相邻级运算共享技术和逐级电容缩减技术,可以大大减小芯片的功耗和面积。电路采用级联1个高性能前置采样保持单元和4个运放共享的1.5位/级MDAC,并采用栅压自举开关和动态比较器来缩减功耗。结果显示,在输入频率达到奈奎斯特频率范围内,整个ADC的有效位数始终高于9位。电路使用TSMC O.18 μm 1P6M CMOS工艺,在100 MHz的采样频率下,功耗仅为45 mW。
关键词:流模/数转换器;运放共享;栅压自举开关;动态比较器

本文引用地址:http://www.eepw.com.cn/article/180264.htm

O 引言
在混合信号集成电路系统中,模/数转换器(ADC)是一个关键的模块。许多现代应用,如数字便携设备、视频处理及无线通信等,都要求具有高采样率、的模/数转换器。同时,由于许多模/数转换器被使用在电池供电的便携式设备中,降低其功耗就变得越加重要。对于10 b,1 MSPS以上的ADC系统而言,流水线结构是一种合适的设计方案。在此阐述了能够满足10位精度、100 MHz采样率的流水线结构ADC,并且运用了相邻两级共用一个运放的运放共享技术和逐级电容缩减技术来减小功耗和面积。该模/数转换器中采用了增益提高运算和动态比较器等元件,也更好的降低了功耗。

1 ADC电路结构
1.5位/级结构的ADC具有许多优点,首先每级多产生一位冗余位来进行数字冗余修正,大大减小比较器失调造成的影响。其次较小的单级分辨率可以获得较高的速度。1.5位/级结构的单级闭环增益为2,开关电容电路可以具有较小的负载电容和反馈因子,因此每级可以获得较大的带宽。所以本电路采用1.5位/级级联的结构。

a.JPG


图1为本文所采用的流水线ADC结构,采用了每级1.5位流水线级级联。最前端是一个高性能采样保持电路,虽然采样保持电路需要消耗大量的功耗,但它能够较好地减小由于MDAC和子ADC之间的采样信号失配造成的孔径误差,可以使得电路性能得到较大提高。依次级联8个相同的1.5位/级结构MDAC,最后一级是一个2位的FLASH ADC。所得到的18位数字输出依次经过时间对齐电路和数字校正电路,经过数字校正后得到所需要的10位数字输出。
如图1所示,电路采用相邻级运算共享技术,后面的8个MDAC仅需要4个运算放大器。为了更好地降,电路使用了逐级电容缩减技术。电路中的Stage 1&2和Stage 3&4采用了相同的运算放大器,Stage 5&6和Stage 7&8进行了缩减,缩减因子为0.7。
1.1 采样保持电路结构
图2为电容翻转型采样保持电路的结构图。相对于电荷转移型的采保电路,这种结构具有较大地反馈系数和较少的电容,使得电路具有实现面积小,噪声低,功耗低,保持相建立时间短等优点,因而更适合于高速的流水线ADC。

b.JPG


该电路工作在采样和保持2个阶段:采样阶段,clkl,clkl_p,clkl_pp为高电平,clk2为低电平,此时输入信号存储在电容上,clkl_PP先于clkl_p和clkl截止,clkl_p先于clkl,采用2个提前截至的时钟波形是为了减小图中采样开关的沟道电荷注入的影响。保持阶段,clkl,clkl_p,clkl_PP为低电平,clk2为高电平,存储于采样电容的电荷传输至采样保持电路的输出并驱动下级负载。该电路的闭环增益为1。
由于开关的开关电阻和电荷注入会对电路产生巨大的影响,图2中的输入采样开关采用了栅压自举开关,这样可以较大的避免与输入信号相关的电荷的注入。


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭