新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路

作者:时间:2010-11-20来源:网络收藏

本文引用地址:http://www.eepw.com.cn/article/180223.htm

  这里标准的应用是使用三相全桥电路。考虑到直流母线电压会达到1000v,那开关器件就必须使用1200v的。而我们知道,1200v功率器件的开关速度会比600v器件慢很多,这就会增加损耗,影响效率。对于这种应用,一个比较好的替代方案是使用中心点箝位(npc=neutral point clamped)的(见图8)。这样就可以使用600v的器件取代1200v的器件。

  


  图8 三相无变压器npc光伏原理图

  为了尽量降低回路中的寄生电感,最好是把对称的双boost电路和npc逆变桥各自集成在一个模块里。

  (1) 双boost模块技术参数(见图9)

  


  图9 flowsol-npb—对称双boost电路

  ●双boost电路都是由mosfet(600v/45 mω)和sic二极管组成;

  ●旁路二极管主要是当输入超过额定负载时,旁路boost电路,从而改善整体效率;

  ●模块内部集成温度检测电阻。

  (2) npc逆变桥模块的技术参数(见图10)

  


  图10 flowsol-npi -npc逆变桥

  ●中间换向环节由75a/600v的igbt和快恢复二极管组成;

  ●上下高频切换环节由mosfet(600v/45 mω)组成;

  ●中心点箝位二极管由sic二极管组成;

  ●模块内部集成温度检测电阻。

  对于这种,关于模块的要求基本类似于前文提到的单相逆变模块,唯一需要额外注意的是,无论是双boost电路还是npc逆变桥,都必须保证dc+,dc-和中心点之间的低电感

  有了这两个模块,就很容易更高功率输出光伏。例如使用两个双boost电路并联和三相npc逆变桥就可以得到一个高效率的10kw的。而且这两个模块的管脚设计充分考虑了并联的需求,并联使用非常方便。图 11是双boost模块并联和三相npc逆变输出模块布局图。

  


  图11 双boost模块并联和三相npc逆变输出模块布局图

  针对1000v直流母线电压的,npc逆变器是目前市场上效率最高的。图12比较了npc模块(mosfet+igbt)和使用1200v的igbt半桥模块的效率。

  


  图12 npc逆变桥输出效率(实线)和半桥逆变效率(虚线)比较

  根据仿真结果,npc逆变器的欧效可以达到99.2%,而后者的效率只有96.4%。npc拓扑结构的优势是显而易见的。

  7 下一代拓扑的设计介绍

  目前混合型h桥(mosfet+igbt)拓扑已经取得了较高的效率等级。而下一代的光伏逆变器,将会把主要精力集中在以下性能的改善:

  (1) 效率的进一步提高;

  (2) 无功功率补偿;

  (3) 高效的双向变换模式。

  7.1 单相光伏逆变器拓扑结构

  对于单相光伏逆变器,首先讨论如何进一步提高混合型h桥拓扑的效率(见图13)。

  在图13中,上桥臂igbt的开关频率一般设定为电网频率(例如50hz),而下桥臂的mosfet则工作在较高的开关频率下,例如16khz,来实现输出正弦波。仿真显示,这种逆变器拓扑在2kw额定功率输出时,效率可以达到99.2%。由于mosfet内置二极管的速度较慢,因此mosfet不能被用在上桥臂。

  


  图13 光伏逆变器的发展-混合型

  由于上桥臂的igbt工作在50hz的开关频率下,实际上并不需要对该支路进行滤波。因此对电路拓扑进行优化,可以得到图14所示的发射极开路型拓扑。这种拓扑的优点是只有有高频电流经过的支路才有滤波电感,从而减小了输出滤波电路的损耗。

  


  图14 改进的无变压器上桥臂发射极开路型拓扑

  目前vincotech公司已经有标准的发射极开路型igbt模块产品,型号是flowsol0-bi open e (p896-e02),如图15所示。

  


  图15 flowsol0-bi-open e (p896-e02)

  技术参数:

  (1) 升压电路采用mosfet(600v/45mω)和sic二极管组成;

  (2) 旁路二极管主要是当输入超过额定负载时,旁路boost电路,从而改善逆变器整体效率;

  (3) h桥的上桥臂采用igbt(600v/75a)和sic二极管,下桥臂采用mosfet(600v/45 mω);

  (4) 模块内部集成温度检测电阻。

  下面再来分析一下图14所示的发射极开路型拓扑。当下桥臂的mosfet工作时,与上桥臂igbt反并联的二极管却由于滤波电感的作用没有工作,这样就可以在上桥臂也使用mosfet,在轻载时提高逆变器的效率。仿真结果显示,在2kw额定功率输出时,这种光伏逆变器的欧效可以提高0.2%,从而使效率达到99.4%。在实际的应用场合中,这种拓扑对效率的提高会更多,因为仿真结果是在假定芯片结温125℃的情况下得到的,但由于mosfet体积较大,且光伏逆变器经常工作在轻载情况下,mosfet芯片结温远远低于125℃,因此实际工作时mosfet的导通阻抗rds-on将比仿真时的数值要低,损耗相应也会更小。

  如何解决无功功率的问题呢?这种电路拓扑处理无功功率的唯一方法就是使用fred-fet,但这些器件的导通阻抗rds-on通常都很高。另一个缺点是其反向恢复特性较差,影响无功补偿和双向变换时的性能。但是在某些特殊应用中,如果必须通过无功功率来测量线路阻抗或者保护某些元器件,那么图16所示拓扑将可以满足以上要求。



评论


相关推荐

技术专区

关闭