新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 人工智能和数学变换用于电能质量的研究综述

人工智能和数学变换用于电能质量的研究综述

作者:时间:2011-02-14来源:网络收藏


2000年,S.Santoso利用傅氏和小波的方法对扰动进行了特征提取[39]后,提出了完整的基于小波的扰动波形的神经网络分类器的实现方法[40-41]。这两篇文章对小波理论及其在电力系统中的应用起到了重要的作用,主要流程示于图3。其中Ident表示用传统的方法判断扰动是否为电 压跌落或瞬时断电,之所以不用小波处理这两种情况是由于小波难以处理光滑连续的电压跌落。 该文提出用各尺度下的小波系数作为ANN的输入特征矢量,这使该工作的输入量太大,于是,文献[42-43]提出用各尺度下的能量的集合作为扰动的特征输入矢量,不但使输入量大为减小,而且得到很好的分类效果。文献[44]则首先找出小波变换后含最大能量的尺度,用该尺度的小波系数与原始正弦波形的小波系数相减,并取其差值作为神经网络的输入变量,从而成功对8种单一扰动进行了有效区分。


但基于小波的ANN方法有时也会误判,而且对多重扰动的分辨率低或者根本无法分辩。这是由于以下原因:1)小波变换难以检测频率微变扰动;2)用来作为ANN输入量的特征量难以选取,无法精确描述各种扰动;3)送入ANN进行训练的样本数无法全面覆盖各种扰动问题;4)基于小波的ANN方法训练的结果受ANN本身结构的限制。
文献[45]对ANN进一步改进,提出使用小波模糊ANN分类器对问题进行检测与分析,该方法首先从原始信号中提取扰动分量并去噪,然后用小波变换提取特征值,最后进行模糊ANN分析与识别,该方法大大减少了输入ANN的特征值的个数,且对各种扰动问题有良好的适应性。文献[46]提出ANN模糊分类器。该文首先将扰动分为三组,选取不同尺度下的小波系数分别作为这三组的ANN输入特征量,在ANN训练后,再通过一模糊联想记忆变换,最大限度消除模式识别中的不确定性,从而提高系统的精确性并简化模型。文献[47]为电能质量的扰动的分类提供了一条全新的思路。它把模糊逻辑和专家系统结合,通过FFT/WT重新定义了8个特征量,建立相应的规则,也得到了很好的分类效果。
2.2 电能质量的提高
除了用AI方法对电能质量的扰动进行分类分析外,也有文献考虑用AI方法提高电能质量,包括用模糊方法实现电压和无功的控制[48]、用专家系统、遗传算法和模糊集理论实现电容器组的最优分布[49-51];用模糊逻辑分析扰动对敏感负荷的作用[52]

3 结论
目前,在动态电能质量缺少统一的定义、统一的实践标准和统一的对扰动进行解释的标准的情况下,结合各种技术和先进的变换工具在对动态电能质量进行检测与识别中的作用已成为一个不争的事实。各种AI方法和变换均有优点也有缺陷,没有哪一种方法是万能的,应该结合各自的长处,对动态电能质量进行最有效的分析。目前为止,对动态电能质量进行识别使用得最多的仍然是基于小波变换的ANN技术,其它AI方法的尚不多见,而且,大部分的识别只针对单一扰动,而对多重扰动的分析几乎没有,这些问题有待进一步的


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭