新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 多路输出正激式变换器耦合滤波电感的设计

多路输出正激式变换器耦合滤波电感的设计

作者:时间:2011-02-14来源:网络收藏

  初级MOS管截止时计算量,占空比最小(D=0.25)时,对100kHz开关频率,最大截止时间Δt=7.5μs,最大纹波电流ΔIm=6A(满载电流的17%),则有:

Lm=E·Δt/ΔIm=5.6×7.5/6=7μH(9)

  设5V端的漏感为700nH(7μH的10%),附加100nH的引线,则L12′为11nH(=100nH/n2),则IL的分配为:

1:6A·11/(800+11)=0.08App

归一化2:6A·800/(800+11)=5.9App

输出2:5.9A/3=2App

  设最小负载电流(ΔI),

  输出1:0.5A

  输出2:2A

  最大输出纹波(ΔU)要求

  输出1:0.05V(输出的1%)

  输出2:0.15V(输出的1%)

  则

C1=(ΔI)/(8fΔU)

=0.5/(8×105×0.05)=12.5μF(10)

ESR1=ΔU/ΔI=0.05/0.5=0.1Ω(11)

C2=(ΔI)/(8fΔU)=2/(8×105×0.15)

=16.7μF(12)

ESR2=ΔU/ΔI=0.15/2=0.075Ω(13)

  实际使用中,由于电解电容器的ESR与直径有关,实选:

C1:10V,1000μF,0.1Ω

体积(D×H):1.3cm×2.9cm

C2:25V,470μF,0.07Ω

体积(D×H):1.7cm×2.9cm

  对上述参数的试验电路实测结果如下:

  输入电压220V,输出1为5V、10A;输出2为15.8V、3A。

  5V纹波Vpp=28mV,15.8V纹波Vpp=80mV。  当输出1为5V、10A负载时,输出2为15.8V的负载从1A变为5A时,其电压从16.0V变化至15.5V,纹波则在75mV~105mV之间变化。

6几点说明

  (1)由于绕制工艺的不同,漏感将在很大范围内变化,为控制2%~10%的漏感范围,最好采用罐形或环形磁芯,双线并绕,低压绕组在里层,或“三明治”绕法,将低压输出绕组夹在高压输出绕组之间,低压输出的纹波将大大减小。

  (2)在前述的分析中,整流、续流对管不可能完全对称,而两路输出的对管的正向压降也会不同。这种不同只会影响输出电压的大小,而对纹波电流的影响,则可通过前述的“漏感”方法予以消除。

  (3)上述“漏感”方法有时不易控制,可以用匝数的小量变化获得同样的效果。对于纹波要求较小的那一路输出的绕组匝数,可乘以110或105的系数。

  如果另外加一个独立的小电感,也可以获得同样的效果。

  (4)上述的分析是以两路输出同为正电压进行的。如果一组输出为负,则电感的同名端应予变化。对于双线并绕的情况,只要将一组绕组的出端与入端对调即可。只是这种对调使两个绕组中的电流方向相反,因而会产生附加的纹波电流。所以实际的绕制工艺,应一组采用顺时针方向绕制,另一组采用反时针方向绕组,这样可获得最佳效果。

  (5)上述两路输出的分析也适用于三路或更多路输出的情况。但首先要满足电感的匝数比等于主变压器的输出绕组的匝数比,再考虑漏感对纹波的影响。

  (6)本文分析的电感的原理也适用于BUCK型的半桥及全桥拓朴。但对于辅助输出再接另一级PWM稳压器或磁饱和稳压器的拓朴形式,则特性及纹波的改善并不明显。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭