新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 用ML4835设计室内可调光小型荧光灯电子镇流器

用ML4835设计室内可调光小型荧光灯电子镇流器

作者:时间:2011-03-03来源:网络收藏

(5)功率因数校正误差放大器输出(PEAO)的补偿(2脚):

补偿网络的典型设计是分别在3Hz与30Hz处引入一个零点和一个极点。

2灯管网络的设计

21灯管网络功能

灯管网络的主要功能是:

(1)以谐振方式把灯管的电弧电阻RL变换成变频器两端的一只能消耗灯管的满载额定功率的电阻RIN。

(2)当用于可调光场合时,它必须维持阻抗与频率的相应关系,即在频率升高时将单调地减小供给灯管的电流,而且维持灯管两端有足够的电压,使之在整个调光范围内都能工作。

良好的镇流器设计需要了解许多灯管的使用数据。高频灯管的数据需要考虑到:①参考的镇流器特性;②工作特性;③点火特性;④调光曲线和阴极加热的必要条件。

除调光曲线外,该32WPLT的数据可从菲利浦照明公司(PhilipsLightingCompany)得到。对高频灯管进行测试方可绘出调光曲线。

22灯管网络设计程序

用于灯管网络设计的推荐程序是:

(1)根据PFC电路和灯管数据计算RIN和RL。

(2)选择恰当的网络拓扑。

(3)用一个扩展图表格式写出网络设计方程式。虽然有各种方法用于设计谐振网络,本网络设计仍采用阻抗变换技术来完成。通常,这种方法要求把电阻值分配给网络中每个电感线圈的输入与输出端,如图3(a)所示。这些数值限定了变换的量值和方向。利用各部分变换的Q值QTRS,可求出网络元件的电抗值:QTRS=(6)

式中R1和R2是变换的电阻。如果R1是输出电阻,那么变换则是向下方的,R1总是接到网络的并联元件两端。如果R1是输入电阻,那么变换则是向上方的。网络的各部分设计在输出端能定时起动。

(4)选择满载功率时的工作频率fmin,并按步骤(3)求出电抗元件的数值。

(5)利用步骤(4)中求出的元件值,写出一组网络工作方程式。该工作方程式用灯管起动电阻RL和把串联等效元件变换为并联元件,再把它们和其它并联元件综合之后写出。然后这些并联元件再反变换为串联等效元件,再把它们和其它串联元件综合。这一过程继续到网络的输入。无论RL是接到串联元件还是接到并联元件,该过程都是相同的。

图4增大RL和XT对QIN的影响

如果设计的方程式是正确的,那么最后的变换将是三个元件串联的结果:一个感抗,一个等值的容抗,一个数值为RIN的电阻,第一个网络元件(在本设计中是L3),是一串联元件。该组方程式限定了网络中每个节点的工作条件,通过节点的电流和所有元件两端的电压,以及相位关系。

(6)利用灯管调光曲线、电弧电压与电弧电流的相应关系,算出曲线不同点所对应的灯管电弧电阻RL。见图4中的电弧电阻曲线。以RL来替代网络工作方程式中的这些电弧电阻值,然后调节频率求出相应的灯管电弧电流。

从最小的RL开始,每个逐次的RL值应需要更高的频率来求出对应的电弧电流值。这就核实了带有灯管的网络调光性能,并绘制出图4中所示的频率曲线。作某些调节,能使设计参数较好地匹配灯管调光网络。例如在设计方程式中用RL=900Ω阻值,代替由灯管数据计算的632Ω,以扩展Q值缩减T型网络的影响、降低灯管电流。

(7)根据灯管点火数据,求出预热期间加在灯管两端所允许的最大电压VPHT。在网络工作方程式中采用很高的电阻RL时,是表明在开路状态,再调节频率求出一个电压值,它稍低于VPHT。存在两个频率值,选择较高的fPHT。

(8)根据灯管点火数据,求出点火所需要的最小电压VST。在网络工作方程式采用高的阻值RL,然后调节频率得到一个高于VST的电压值。将会存在两个频率值,选择较低的fST。

23灯管网络设计

(1)求解网络元件的数值

首先是计算两个串联灯管的RL值:RL==632Ω

式中:VL和IL分别是灯管电压和电流,它们是在全亮强度时的值。然后求EIN:因方波的基波有效值电压是其峰卜逯档/π倍,即

EIN=0.45×VB=171V所以:RIN=≈390Ω

式中:PO=(灯管电弧功率+灯丝功率)/(效率)=(64+1)/0.88≈75W。

因此该网络应把632Ω的灯管电阻,转变成变频器的390Ω,以产生75W功率。

(2)选择网络拓扑

由于RL大于RIN,一个低通LC网络(串联的L和并联的C)与接在C两端的灯管,可以提供基本的灯管网络功能。

该典型网络用于ML4831EVAL和ML4833EVAL电路板,它们设计工作在线性的灯管。然而小型荧光灯CFL的调光特性与线性灯管有很大差别,会使采用该网络拓扑变得不切实际。图5给出了加在两个串联32WT8型(线性)灯管和32WPLT(小型荧光灯)灯管两端的电压曲线,是在它们调光10%时测量的。要注意到小型荧光灯CFL两端的电压增加到大于80%时,在线性灯管的两端电压变化却只有20%左右。

图5施加在32WT8和32WPLT两种灯管上的电压

由于灯管接在并联电容器两端,所以当调光器指示电弧电阻和Q值有相应较大的增加时,在小型荧光灯两端的电压会大幅升高,即:

Q=RL/XC

然而当调光时加在灯管的高电压增加,此时需要低的网络Q值。为了克服这个性能上的矛盾,在低通网络之后设置一个高通T型网络来驱动灯管,即由一只串联的电容器C13来驱动灯管,当灯管调光时它会减小网络的Q值。即:

QO=XC13/RL

这些网络组合成一个低通L环节跟随一个高通T环节(两个高通L环节背对背),它是作为变压器耦合的T型L环节,见图3(a)。

低通LC网络的Q值QIN,可做得大于高通T网络的输出Q值QOUT,以正确地实现网络的频率响应。

(3)网络工作的说明

当灯管调光并且QOUT减小时,C13的等效并联电抗XC13P变大,这是因为:XC13P=XC13×(7)

把XC13P与变压器的副边电抗(T的分流引线)结合,变换到原边时为XT。变压器T的输入Q值QM可做得很小:QM=,以及XC12=QM×RM(8)

所以XC12也小到允许XT并联在C11,成为LC的并联电容,见图3(b)。

当RL更大并且XT变为更呈电感性时,XT与XC11的的复合电抗增大,引起QIN降低。这种影响可以从图4中的关系曲线看出。由于频率曲线的斜率随灯管电流变化,与网络的Q值成反比。

所以当灯管调光使曲线的斜率变得更陡时,表明网络的Q值减小。该网络在频率单独增大50%时,将灯管调光在全发光输出时的5%。低的调光频率能使寄生电流的损耗最小,并允许灯管以遥控方式设置。

(4)选择fmin和求出网络元件的数值

在选择了恰当的网络拓扑、并分配了变换电阻之后,再计算变换的Q值和求出网络的元件数值。例如在图3(a)中的低通LC网络,选择R1=1740Ω作为它的输出电阻器RM,选择R2=390Ω作为它的输入电阻器RIN,因此输入Q值QTRS将是1.86,从而有:XC11==-935Ω,以及XL3=1.86×390=725Ω

为了能使用标准电容器C11=4.7nF,选择的频率值为fmin=36.2kHz。实际fmin稍微提高到40kHz,以改进调光性能。fmin是由R19阻值来设定。选择C20=1.5nF,以便在栅极驱动信号之间产生一个合理的死区时间。

(5)选择预热时的频率fPHT

如网络设计程序(7)所述,选择fPHT=64.5kHz,以设置灯管两端的电压为350V。根据选择的R18阻值来设置频率,并由R22和C21数值来设置预热的间隔时间为0.9s。

(6)选择灯管的点火频率fST

如网络设计程序(8)所述,选择fST=48.5kHz。按RT2的阻值来设置频率。

(7)灯丝电压和阴极电压

阴极加热通过在灯管两端放置的一个小变压器来获得。在调光情形之下这是理想的位置,因为对调光灯管阴极加热是额外的。在预热期间,变压器匝数比由灯管两端的电压来确定。由Philips照明提供的镇流器指南建议预热时间为1s,灯丝电压应在3.9V~5.2V。当预热时间为0.9s时,电压调节在4.8V。这是因为在预热期间加在灯管两端的电压为352V,其匝数比为74。在全发光强度时的灯丝电压是28V,并以5%的速率增加到51V。



关键词:

评论


相关推荐

技术专区

关闭