新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 开关电源控制环路如何设计

开关电源控制环路如何设计

作者:时间:2011-04-10来源:网络收藏
3.0 的理想增益相位图

本文引用地址:http://www.eepw.com.cn/article/179263.htm

  任何系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

  

  3.1 相位裕量

  参看图4,相位裕量是在穿越频率处相位高于0度的数量。这不同于大多数系统教科书里提出的从-180度开始测量相位裕量。其中包括DC负反馈所提供的180度初始相移。在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。

  根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。如果相位裕量小于45度,则系统在边界稳定。当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。

  

  3.2 增益带宽

  增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。最大穿越频率的主要限制因素是电源的开关频率。根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取。

  在中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被所传递。

  因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。

  3.3 增益

  高的系统增益对于保证好的线性和负载调节率提供重要贡献。它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。

  4. 实际分析举例

  用经典控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM电路,误差放大器补偿和反馈。图5用方块图举例说明这四部分,图6举例说明一个电路图。

  首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。

  4.1 反馈网络H(s)

  反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:

  4.2 输出滤波部分G1(S)

  在电流模式控制系统中,输出电流被调节以达到目标的输出电压。输出滤波部分把脉动的输出电流转换为目标输出电压。小信号分析得到:输出电容的ESR和反馈网络的电阻(R1+R2=RFB)反映出输出滤波器传输函数的特性。图7的电路分析给出ESR和RSENSE的影响。

  

  传输函数G1(S)给出RFB的初始低频增益。这个增益在fPOLE=1/2*π*(RFB+ESR)*C处开始滚降,并在fZERO=1/2*π*ESR*C变为水平。G1(S)的博得图见图8。

  



评论


相关推荐

技术专区

关闭