新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 一种紧凑型全桥DC-DC隔离电源设计

一种紧凑型全桥DC-DC隔离电源设计

作者:时间:2011-12-05来源:网络收藏

参数为:输入+15 V;输出+15 V、-10 V;输出功率6 W;工作频率360 kHz。要求额定负载下动态特性、满足:+15 V波动+1 V;-10 V波动-2V;工作频率满足5%的偏差容限。其中工作频率由施密特触发器CD40106参数及RC数值决定。具体参数为:R=2.2kΩ;C=748 pF;VDD=15 V;VT+=8.8 V;VT-=5.8 V。根据式(1)计算出振荡频率为748.792 kHz,因为中多谐振荡器输出对2路RC充放电,充电电容容量增大一倍,因此振荡频率为上述计算频率的1/2,即374.396kHz。
b.JPG
1.2.1 原边共用控制的4路PWM信号产生
传统的拓扑由4只相同的开关管组成,需要2路互反的PWM控制信号,每路PWM信号驱动对角的2只开关管,2路PWM信号要求有死区,避免全桥直通。全桥拓扑的上桥臂驱动必须,否则无法完成正确驱动,电路一般采用光耦或磁性器件实现,电路复杂、体积大。采用2个变压器原边绕组共用一个全桥开关,由于系统为+15 V单输入,因此全桥开关采用2片内含PMOS和NMOS的S14532ADY实现,此时PWM驱动脉冲无需,即不用将全桥的上下臂驱动脉冲进行隔离,使用振荡电路的逻辑门进行驱动,简化了控制电路,同时该全桥开关为小体积的SO-8封装,实现了最小PCB。据此原理设计全桥开关需要4路PWM脉冲驱动,分为2组,每组内互反,驱动对角的PMOS和NMOS开关,2组之间带有死区,具体的4路,驱动脉冲时序要求如图2所示。G11、G2、G22、G1为4路PWM驱动,T1、T11为两个电源变压器,此处只画出了原边绕组,C为隔直电容,能够有效地防止变压器磁芯饱和。可以看到,对角的开关同时导通,两组对角交替开关,两个变压器磁芯工作在I、Ⅲ工作象限,双向励磁,有利于实现高功率密度。

本文引用地址:http://www.eepw.com.cn/article/178304.htm

c.JPG


采用上述设计,4路PWM时序必须严格按照图2所示产生。一般PWM驱动产生方法用MCU、DSP或专用IC产生,难以实现低成本和紧凑设计。文中对通用多谐振荡器电路进行改进,分别增加两个二极管、电阻及电容,即可输出满足上述要求的4路PWM驱动信号,简化了电源设计,提高了可靠性。
1.2.2 DC-DC电源变压器的选择及设计
系统电源采用全桥驱动,磁芯工作在I、Ⅲ象限,驱动上要能够防止磁芯饱和,同时要求效率高、体积小。基于上述考虑,选用环形磁芯T10×6×5,材质为PC40,环形磁芯漏磁小、效率高。具体参数为:μi=2 400,Ae=9.8 mm2,Aw=28.2mm2,J=2A/mm2。系统工作状态为:ηB=90%,Km=0.1,fs=366 kHz,Bm=2 000 GS,根据P0=Ae×Aw×2×fs×Bm×J×ηB×Km×10-6。得出P0=9.8×10-2×28.2 x 10-2×2×366×103×2 000 x 2×0.9×0.1×10-6=7.3 W,理论计算表明,所选磁芯满足设计的功率要求。
变压器匝数设计是根据式(2)和式(3)计算,其中μi为输入电压最小值,△Vce为额定电流下全桥回路开关管压降,Dmax=0.48;μo为输出电压额定值;△Vd为输出额定电流下全波整流二极管压降。理论计算原副边匝数为:原边Np=4.6匝,副边Ns1=5.8匝,Ns2=3.9匝。
Np=[(μi-△Vce)×Dmax]/(2△B×Ae×fs) (2)
Np=[(μo-△Vd)×(1-Dmax)]/(2△B×Ae×fs) (3)
实际调试结果为:原边p=6匝,副边Ns1=8匝,Ns2=5匝。



评论


相关推荐

技术专区

关闭