新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 电源工程师设计札记(一):轻松完成电源设计

电源工程师设计札记(一):轻松完成电源设计

作者:时间:2012-08-10来源:网络收藏

  

  降压转换器关键规格和定义

  输入电压范围:降压转换器的输入电压范围决定了最低的可用输入电压。规格可能提供很宽的输入电压范围,但VIN 必须高于VOUT才能实现高效率工作。例如,要获得稳定的 3.3 V输出电压,输入电压必须高于 3.8 V。

  地电流或静态电流:IQ是未输送给负载的直流偏置电流。器件的IQ越低,则效率越高。然而,IQ可以针对许多条件进行规定,包括关断、零负载、PFM工作模式或PWM工作模式。因此,为了确定某个应用的最佳降压调节器,最好查看特定工作电压和负载电流下的实际工作效率数据。

  关断电流: 这是使能引脚禁用时器件消耗的输入电流,对低功耗降压调节器来说通常远低于 1µA。这一指标对于便携式设备处于睡眠模式时电池能否具有长待机时间很重要。

  输出电压精度: ADI 公司的降压转换器具有很高的输出电压精度,固定输出器件在工厂制造时就被精确调整到±2%之内(25°C)。输出电压精度在工作温度、输入电压和负载电流范围条件下加以规定,最差情况下的不精确性规定为±x%。

  线路调整率: 线路调整率是指额定负载下输出电压随输入电压变化而发生的变化率。

  负载调整率: 负载调整率是指输出电压随输出电流变化而发生的变化率。对于缓慢变化的负载电流,大多数降压调节器都能保持输出电压基本上恒定不变。

  负载瞬变:如果负载电流从较低水平快速变化到较高水平,导致工作模式在 PFM 与 PWM 之间切换,或者从 PWM 切换到 PFM,就可能产生瞬态误差。并非所有数据手册都会规定负载瞬变,但大多数数据手册都会提供不同工作条件下的负载瞬态响应曲线。

  限流:ADP2138 等降压调节器内置保护电路,限制流经 PFET 开关和同步整流器的正向电流。正电流控制限制可从输入端流向输出端的电流量。负电流限值防止电感电流反向并流出负载。

  软启动:内部软启动功能对于降压调节器非常重要,它在启动时控制输出电压缓升,从而限制浪涌电流。这样,当电池或高阻抗连接到转换器输入端时,可以防止输入电压下降。器件使能后,内部电路开始上电周期。

  启动时间是指使能信号的上升沿至VOUT达到其标称值的 90%的时间。这个测试通常是在施加VIN、使能引脚从断开切换到接通的条件下进行。在使能引脚连接到VIN的情况下,当VIN从关断切换到开启时,启动时间可能会大幅增加,因为控制环路需要一定的稳定时间。在调节器需要频繁启动和关闭以节省功耗的便携式系统中,调节器的启动时间是一个重要的考虑因素。

  热关断(TSD): 当结点温度超过规定的限值时,热关断电路就会关闭调节器。极端的结温可能由工作电流高、电路板冷却不佳或环境温度高等原因引起。保护电路包括一定的迟滞,防止器件在芯片温度降至预设限值以下之前返回正常工作状态。

  100%占空比工作: 随着VIN下降或ILOAD上升,降压调节器会达到一个限值:即使PFET开关以 100%占空比导通,VOUT仍低于预期的输出电压。此时,ADP2138 平滑过渡到可使PFET 开关保持 100%占空比导通的模式。当输入条件改变时,器件立即重新启动PWM调节,VOUT不会过冲。

  放电开关: 在某些系统中,如果负载非常小,降压调节器的输出可能会在系统进入睡眠模式后的一定时间内仍然保持较高水平。然而,如果系统在输出电压放电之前启动上电序列,系统可能会发生闩锁,或者导致器件受损。当使能引脚变为低电平或器件进入欠压闭锁/热关断状态时,ADP2139 降压调节器通过集成的开关电阻(典型值 100 Ω)给输出放电。

  欠压闭锁: 欠压闭锁(UVLO)可以确保只有在系统输入电压高于规定阈值时才向负载输出电压。UVLO 很重要,因为它只在输入电压达到或超过器件稳定工作要求的电压时才让器件上电。

  结束语

  低功耗降压调节器使开关DC-DC转换器不再神秘。ADI 公司提供一系列高集成度、坚固耐用、易于使用、高性价比的降压调节器,只需极少的外部元件就能实现高工作效率。

  5、同步降压调节器ADP2118的简单应用

  伴随着许多低功耗器件的应用,越来越多的降压调节器芯片很受电子们的亲睐,在这里我向大家推荐一款我用过的同步降压调节器芯片ADP2118,具有低静态电流、同步、降压DC-DC调节器,特别是其4mm×4mm的LFCP封装,对于现在的产品要求小型化,更是特别的适合。

  ADP2118采用2.3V至5.5V输入电压工作,输出电压可以在0.6V至输入电压Vin的范围内灵活调整。另外,ADP2118提供许多固定输出的,比如3.3V,2.5V等常用的低电压,只需在输入和输出端增加滤波电路就行,应用很简单的。下面我还是从5V转换为3.3V的典型电路上分析一下ADP2118的应用:

  

  从以上连接我们可以看出,ADP2118的外围电路非常简单,输入电压为5V,输出电压3.3V通过分压电阻R10和R11得到。作为同步降压型调节器,ADP2118的引脚:

  Pin1为同步输入引脚,当此引脚与VIN相连时,PFM模式禁用,ADP2118仅工作在电流连续导通模式,此引脚与地连接时,PFM模式使能;

  Pin2为频率选择,当连接至GND选择600Hz,连接至VIN时选择1.2MHz;

  Pin3为跟踪输入,要跟踪主电压,从主电压的分压器引出电压来驱动TRK,如果不跟踪,就直接连接至VIN;

  作为常用的电路,我们选择ADP2118工作在电流连续导通模式,工作频率为1.2MHz,不采用跟踪模式,故直接连接将Pin1、Pin2和Pin3至VIN引脚;

  ADP2118的其余引脚,根据定义去连接,记得连接上输出电感和滤波电容哦。由于ADP2118根据负载的大小决定工作模式,当轻载时切换到PFM模式,中载至满载时切换到电流连续导通模式。经过测试,发现PFM模式下ADP2118输出电压的纹波远大于PWM模式下输出电压,故推荐使用PWM模式,即典型电路连接方式。

  最后,也是ADP2118的特色,集成有软启动,用于限制输出电压上升时间并减少启动时的浪涌电流,软启动的固定时间周期为2048个时钟周期。

  以上是我在应用ADP2118时的某些发现,希望能给大家的芯片选择方面带来某些帮助,将感到无比欣慰。谢谢!

  6、用20位DAC实现1 ppm精度——精密电压源

  高分辨率数模转换器(DAC)的常见用途之一是提供可控精密电压。分辨率高达20位、精度达1 ppm且具有合理速率的DAC的应用范围包括医疗MRI系统中的梯度线圈控制、测试和计量中的精密直流源、质谱测定和气谱分析中的精密定点和位置控制以及科学应用中的光束检测。

  随着时间的推移,半导体处理和片内校准技术的发展,关于精密集成电路DAC的定义也不断变化。高精度12 位DAC一度被认为遥不可及;近年来,16 位精度已日益在精密医学、仪器仪表、测试和计量应用中得到广泛运用;在未来,控制系统和仪器仪表系统甚至需要更高的分辨率和精度。

  高精密应用目前要求18/20位、1 ppm精度数模转换器,以前只有笨重、昂贵、慢速的Kelvin-Varley分压器才能达到这一性能水平——属于标准实验室的专利,几乎不适用于现实仪器仪表系统。针对这类要求且采用IC DAC组件,更便利的半导体1 ppm 精度解决方案已推出数年,但此类复杂系统需要使用多种器件,需要不断进行校准,还需十分谨慎才可取得理想精度,而且体积大、成本高(见附录)。长久以来,精密仪器仪表市场都需要一种更简单,具有成本优势,无需校准或持续监控,简单易用,而且提供保证性能规格的DAC。目前,从16 位和18 位单芯片转换器(如DAC)自然升级已成为可能。

  AD5791 1 ppm DAC

  半导体处理技术、DAC架构和快速片内校准技术的发展使稳定、建立时间短的高线性度数模转换器成为可能。这种转换器可提供高优于1 ppm的相对精度、0.05 ppm/°C温度漂移、0.1 ppm p-p噪声、优于1 ppm的长期稳定性和1MHz吞吐量。这类小型单芯片器件保证性能规格,无需校准且简单易用。AD5791及其配套基准电压源和输出缓冲的典型功能框图如图1所示。

  

  图1. AD5791典型工作框图。

  AD5791是一款单芯片、20 位、电压输出数模转换器,具有额定的1 LSB(最低有效位)积分非线性度(INL)和微分非线性度(DNL),是业界首款单芯片1 ppm 精度的数模转换器(1 LSB@20位为220分之一 =1,048,576分之一 = 1 ppm)。该器件用于高精密仪器仪表以及测试和计量系统,与其他解决方案相比,其整体性能有较大提升,具有更高的精度、体积更小、成本更低,使以前不具经济可行性的仪器仪表应用成为可能。

  其设计(如图2所示)采用精密电压模式R-2R架构,利用了最新的薄膜电阻匹配技术,并通过片内校准例程来实现1 ppm精度。由于AD5791采用工厂校准模式,因而运行时无需校准程序,其延迟不超过100 ns,可用于波形生成应用及快速控制环路。

  

  图2. DAC梯形结构。

  AD5791不但提供出色的线性度,而且可具有9 nV/√Hz噪声密度、0.1 Hz至10 Hz频带内0.6 μV峰峰值噪声、0.05 ppm/°C温度漂移,且其1000小时长期稳定性优于0.1 ppm。

  作为一种高电压器件,采用双电源供电,最高±16.5 V。输出电压范围由正负基准电压VREFP和VREFN决定,提供了灵活的输出范围选择。

  AD5791所用精密架构要求使用高性能外置放大器来缓冲来自3.4 k? DAC电阻的基准源,为基准输入引脚的加载感应提供方便,以确保AD5791的1 ppm线性度。AD5791需要一个输出缓冲来驱动负载,以减轻3.4 k?输出阻抗的负担——除非驱动的是一个极高阻抗、低电容负载——或者衰减处于容限之内并可预测。

  由于放大器为外置型,可根据噪声、温度漂移和速度的优化需要进行选择——并可调整比例因子——具体视应用需要而定。对于基准缓冲,建议采用AD8676 双通道放大器,其具有低噪声、低失调误差、低失调误差漂移和低输入偏置电流的特点。基准缓冲的输入偏置电流特性非常重要,因为过大的偏置电流会降低直流线性度。积分非线性度的降低(单位:ppm)为输入偏置电流的函数,一般表示为:

  

  其中,IBIAS 单位为 nA;VREFP和VREFN的单位均为伏特。例如,对于±10 V的基准输入范围,100 nA的输入偏置电流将使INL提高0.05 ppm。

电机保护器相关文章:电机保护器原理


评论


相关推荐

技术专区

关闭