新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 如何深入分析电源电路技巧(二):驾驭噪声电

如何深入分析电源电路技巧(二):驾驭噪声电

作者:时间:2012-08-10来源:网络收藏

  谐振时滤波器的高阻抗和高阻性

  图 2 谐振时滤波器的高阻抗和高阻性

  振荡

  但是,开关的谐振滤波器与负阻抗耦合后会出现问题。图 3 显示的是在一个电压驱动串联中值相等、极性相反的两个电阻。这种情况下,输出电压趋向于无穷大。当您获得由谐振输入滤波器等效电阻所提供的负电阻时,您也就会面临一个类似的系统情况;这时,往往就会出现振荡。

  与其负阻抗耦合的开关谐振滤波器可引起不必要的振荡

  图 3 与其负阻抗耦合的开关谐振滤波器可引起不必要的振荡

  设计稳定电源系统的秘诀是保证系统电源阻抗始终大大小于电源的输入阻抗。我们需要在最小输入电压和最大负载(即最低输入阻抗)状态下达到这一目标。

  在极端情况下,这些阻抗振幅可以相等,但是其符号相反从而构成了一个振荡器。业界通用的标准是输入滤波器的源极阻抗应至少比开关调节器的输入阻抗低 6dB,作为最小化振荡概率的安全裕度。

  输入滤波器设计通常以根据纹波电流额定值或保持要求选择输入电容(图 1 所示 CO)开始的。第二步通常包括根据系统的 EMI 要求选择电感 (LO)。正如我们上个月讨论的那样,在谐振附近,这两个组件的源极阻抗会非常高,从而导致系统不稳定。图 1 描述了一种控制这种阻抗的方法,其将串联电阻 (RD) 和电容 (CD) 与输入滤波器并联放置。利用一个跨接 CO 的电阻,可以阻尼滤波器。但是,在大多数情况下,这样做会导致功率损耗过高。

  另一种方法是在滤波器电感的两端添加一个串联连接的电感和电阻。

  

  图 1 CD 和 RD 阻尼输出滤波器源极阻抗

  选择阻尼电阻

  有趣的是,一旦选择了四个其他组件,那么就会有一个阻尼电阻的最佳选择。图 2 显示的是不同阻尼电阻情况下这类滤波器的输出阻抗。红色曲线表示过大的阻尼电阻。请思考一下极端的情况,如果阻尼电阻器开启,那么峰值可能会非常的高,且仅由 CO 和 LO 来设定。蓝色曲线表示阻尼电阻过低。如果电阻被短路,则谐振可由两个电容和电感的并联组合共同设置。绿色曲线代表最佳阻尼值。利用一些包含闭型解的计算方法(见参考文献 1)就可以很轻松地得到该值。

  

  图 2 在给定 CD-CO 比的情况下,有一个最佳阻尼电阻

  选择组件

  在选择阻尼组件时,图 3 非常有用。该图是通过使用 RD Middlebrook 建立的闭型解得到的。横坐标为阻尼滤波器输出阻抗与未阻尼滤波器典型阻抗 (ZO = (LO/CO)1/2) 的比。纵坐标值有两个:阻尼电容与滤波器电容 (N) 的比;以及阻尼电阻同该典型阻抗的比。利用该图,首先根据电路要求来选择 LO 和 CO,从而得到 ZO。随后,将最小电源输入阻抗除以二,得到您的最大输入滤波器源极阻抗 (6dB)。

  最小电源输入阻抗等于 Vinmin2/Pmax。只需读取阻尼电容与滤波器电容的比以及阻尼电阻与典型阻抗的比, 您便可以计算得到一个横坐标值。例如,一个具有 10μH 电感和 10μH 电容的滤波器具有 Zo = (10μH/10 μF)1/2 = 1 Ohm 的典型阻抗。如果它正对一个 12V 最小输入的 12W 电源进行滤波,那么该电源输入阻抗将为 Z = V2/P = 122/12 = 12 Ohms。这样,最大源极阻抗应等于该值的二分之一,也即 6 Ohms。现在,在 6/1 = 6 的 X 轴上输入该图,那么,CD/CO = 0.1,即 1 μF,同时 RD/ZO = 3,也即 3 Ohms。

  

  图 3 选取 LO 和 CO 后,便可从最大允许源极阻抗范围内选择 CD 和 RD。
4:降压-升压电源设计中降压控制器的使用

  电子电路通常都工作在正稳压输出电压下,而这些电压一般都是由降压稳压器来提供的。如果同时还需要负输出电压,那么在降压—升压拓扑中就可以配置相同的降压控制器。负输出电压降压—升压有时称之为负反向,其工作占空比为 50%,可提供相当于输入电压但极性相反的输出电压。其可以随着输入电压的波动调节占空比,以“降压”或“升压”输出电压来维持稳压。

  图 1 显示了一款精简型降压—升压电路,以及电感上出现的开关电压。这样一来该电路与标准降压转换器的相似性就会顿时明朗起来。实际上,除了输出电压和接地相反以外,它和降压转换器完全一样。这种布局也可用于同步降压转换器。这就是与降压或同步降压转换器端相类似的地方,因为该电路的运行与降压转换器不同。

  FET 开关时出现在电感上的电压不同于降压转换器的电压。正如在降压转换器中一样,平衡伏特-微秒 (V-μs) 乘积以防止电感饱和是非常必要的。当 FET 为开启时(如图 1 所示的 ton 间隔),全部输入电压被施加至电感。这种电感“点”侧上的正电压会引起电流斜坡上升,这就带来电感的开启时间 V-μs 乘积。FET 关闭 (toff) 期间,电感的电压极性必须倒转以维持电流,从而拉动点侧为负极。电感电流斜坡下降,并流经负载和输出电容,再经二极管返回。电感关闭时V-μs 乘积必须等于开启时 V-μs 乘积。由于 Vin 和 Vout 不变,因此很容易便可得出占空比 (D) 的表达式:D=Vout/(Vout “ Vin)。这种控制电路通过计算出正确的占空比来维持输出电压稳压。上述表达式和图 1 所示波形均假设运行在连续导电模式下。

  降压—升压电感要求平衡其伏特-微秒乘积

  图1:降压—升压电感要求平衡其伏特-微秒乘积。

  降压—升压电感必须工作在比输出负载电流更高的电流下。其被定义为 IL = I《 sub》/(1-D),或只是输入电流与输出电流相加。对于和输入电压大小相等的负输出电压(D = 0.5)而言,平均电感电流为输出的 2 倍。

  有趣的是,连接输入电容返回端的方法有两种,其会影响输出电容的 rms 电流。典型的电容布局是在 +Vin 和 Gnd 之间,与之相反,输入电容可以连接在 +Vin和 ”V《 sub》 之间。利用这种输入电容配置可降低输出电容的rms电流。然而,由于输入电容连接至 “Vout,因此 ”Vout 上便形成了一个电容性分压器。这就在控制器开始起作用以前,在开启时间的输出上形成一个正峰值。为了最小化这种影响,最佳的方法通常是使用一个比输出电容要小得多的输入电容,请参见图 2 所示的电路。输入电容的电流在提供 dc 输出电流和吸收平均输入电流之间相互交替。rms 电流电平在最高输入电流的低输入电压时最差。因此,选择电容器时要多加注意,不要让其 ESR 过高。陶瓷或聚合物电容器通常是这种拓扑较为合适的选择。

  降压控制器在降压—升压中的双重作用

  图2:降压控制器在降压—升压中的双重作用。

  必须要选择一个能够以最小输入电压减去二极管压降上电的控制器,而且在运行期间还必须能够承受得住 Vin 加 Vout 的电压。FET 和二极管还必须具有适用于这一电压范围的额定值。通过连接输出接地的反馈电阻器可实现对输出电压的调节,这是由于控制器以负输出电压为参考电压。只需精心选取少量组件的值,并稍稍改动电路,降压控制器便可在负输出降压—升压拓扑中起到双重作用。

DIY机械键盘相关社区:机械键盘DIY



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭