新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 动态电源路径管理的高效开关模式充电器系统设计注意事项

动态电源路径管理的高效开关模式充电器系统设计注意事项

作者:时间:2012-09-03来源:网络收藏


激活输入电压调节环路,以将输入电压维持在预定义电压电平。自动降低充电电流,以使来自输入的总电流达到其最大值,而输入又不会崩溃。因此,现在便可以追踪适配器的最大输入电流。利用这种方法输入调节电压,其电压仍然高到足以对电池完全充电。例如,可以将它设置为 4.35V 左右,以对一个单节锂离子电池组进行完全充电。

本文引用地址:http://www.eepw.com.cn/article/176314.htm

2.jpg
图 2 输入电压型动态

输入电流和输入电压型 DPM 控制都可以从适配器获取最大功率的同时而不使适配器崩溃。对于诸如智能电话和平板电脑等便携式设备来说,负载通常随高脉动电流而动态变化。即使是充电电流已经降至零,如果脉动峰值功率高于输入功率,那会出现什么情况呢?在没有主动控制的情况下,输入电源可能会崩溃。

一种解决方案是增加适配器额定功率,但这会增加适配器的尺寸和成本。另一种方案是除适配器提供的有效功率以外再为系统补充额外功率,以对电池临时放电。因此,电池会开启 MOSFET Q4 来提供额外功率,从而实现电池放电而充电。组合使用 DPM 控制和电池补充功率,可实现对适配器的优化,以支持平均功率而非最大峰值系统功率,达到降低成本和实现最小解决方案尺寸的目的。
提高系统性能考虑
一些便携式电源系统,例如:平板电脑和智能电话等,要求具有一种“快速开机”功能,以提升用户体验。这就意味着,不客电池是完全充电还是深度放电,当连接适配器时系统都要能够快速开启。

让我们来回顾图 1-2 所示系统,并使用一个单节锂离子电池系统作为举例。如果在不使用MOSFET Q4 的情况下将电池直接连接至系统,VBUS 的系统总线电压与电池电压相同。一块电压为 3V 的深度放电电池,其电压不足以开启系统。终端用户需要等电池充电至 3.4V 之后,才能开启系统。为了支持系统快速开机,需要添加一个 MOSFET Q4,让系统在线性下工作,以维持最小系统工作电压,并同时对深度放电的电池充电。最小系统电压由式转换器调节,而充电电流则由 LDO 通过控制 MOSFET Q4 来调节。一旦电池电压达到最小系统工作电压,MOSFET Q4 便完全开启。它的充电电流通过同步降压转换器的占空比调节。因此,系统电压始终维持在最小系统工作电压和驱动系统的最大电池电压之间。

如何延长电池工作时间呢?当然,电池容量越高,电池工作时间也就越长。就单节电池供电系统而言,典型的最小系统电压为 3.4V 左右,以达到系统所要求的 3.3V输出。如果 MOSFET Q4 的导通电阻为 50 mΩ,并且电池放电电流为 3A,则电池终止电压为 3.55V。这就意味着 15% 以上的电池容量未用,残留在电池中。为了最大化电池工作时间,MOSFET Q4 的导通电阻必须的尽可能地小,例如:10 mΩ。

图 3 显示了一个使用集成 MOSFET 的高效、单节电池 I2C 电池举例。该同时支持 USB 和 AC 适配器输入,适用于平板电脑和便携式媒体设备应用。同时集成了 4 个功率 MOSFET,而 MOSFET Q1 和 Q4 用于检测输入电流和电池充电电流,目的是进一步最小化系统解决方案尺寸。这种可以检测到 USB 和适配器电源之间的切换,以快速建立正确的输入电流限制。另外,充电器还可以作为一个单独的充电器使用内部默认充电电流、充电电压、安全计时器和输入电流限制对电池充电—即使系统为关闭状态。它还拥有 USB OTG 功能,可让充电器工作在增压模式下,通过电池为 USB 输入端提供 5V/1.3A 输出。

1.jpg


图 3 使用动态电源的 4A I2C 高效模式充电器



评论


相关推荐

技术专区

关闭