新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 绿色混合数字计算电源管理

绿色混合数字计算电源管理

作者:时间:2012-10-17来源:网络收藏

图6,慢速环路与快速环路瞬态响应。

本文引用地址:http://www.eepw.com.cn/article/176092.htm

图8,采用Intersil的线性控制的瞬变。
图8,采用Intersil的线性控制的瞬变。

图10,线性控制1MHz瞬变的相位转换顺序。
图10,线性控制1MHz瞬变的相位转换顺序。

(4)DC性能

与模拟解决方案的无限分辨率相比,全解决方案常常具有由于ADC分辨率和PWM分辨率而产生的量子化误差。另外,状态的纹波变化也会影响稳压精度,如图11所示。方案保持了模拟方案的高精度。

控制器常常声称在环境条件、老化和元件变化下具有更小的Vout漂移。对控制环路补偿部分(没有外置R和C)是真的,但包括输出滤波器(电感和电容)在内的功率系的特征仍然会随着环境温度、老化和元件变化而变化。校准可以改进精度,特别是在电流侦测中,但它会增加成本(参见E部分)。除非在每次上电时进行校准并对控制环路进行重新配置,否则数字解决方案将仍然会有易受环境变化影响的缺点。此外,低DCR(0.15mOhm或更小)电感将会继续增多这样的影响,在全数字控制器的情况下这将要求更高分辨率的ADC,亦即更高的偏置电流。

数字解决方案的DC精度受PWM分辨率的影响[2];例如,200ps PWM分辨率会对1MHz 开关频率下的12V输入产生2.4mV误差。

图11,来自VID加载的输出失调(10A)
图11,来自VID加载的输出失调(10A)

(5)校准

全数字解决方案常常宣扬其校准功能,因为它们常常需要进行校准来实现与方案相同的精度。校准是复杂和非免费的,常常需要外置MOSFET和精密侦测电阻,如同厂商B的解决方案一样。这些附加元件通常价值超过0.20美元,同时还会增加用电量。

(6)相倍增器兼容性和上电顺序

相数倍增器常常用于高相数和超频应用[3]。通道之间的电流均衡对设计稳健和可靠的系统极其重要。市面上实现通道电流均衡的相数倍增器仅为5V PWM输入逻辑[11,12],且不兼容3.3V数字控制器。数字控制器一直使用没有电流均衡功能的相数倍增器,这会产生长期可靠性较差和可能造成系统发热事件。Intersil相数倍增器集成电路的卓越相间电流均衡请参见图12。

图12,Intersil相倍增器在负载瞬变期间的通道电流均衡
图12,Intersil相倍增器在负载瞬变期间的通道电流均衡

在服务器领域,可产生最佳效率的典型驱动器电压为5V,这是不同于数字控制器的偏置电压的,它使上电顺序和保护复杂化;出现了三种可能情景:

1) 驱动器首先上电。 驱动器检测到PWM低并接通低端MOSFET来给输出放电;系统将不允许预充电启动。

2) 数字控制器首先上电。驱动器检测到PWM高或者在驱动器电压变慢时检测到一个全占空比PWM信号;系统将失去软启动并导致高端MOSFET的过应力。

3) 驱动器和控制器由同一个启用信号控制。在断电期间由于高端MOSFET短路,CPU将不会受到保护,因为驱动器已被禁用。

(7)系统保护

数字控制器需要数字化电压和电流信息,然后再将其转换回模拟信息,这一切全都在控制环路内部进行。这通常导致比模拟环路更慢的响应,如图5所示。另外,由于控制环路中的ADC和DAC,数字控制器将对需要立即予以响应的故障(如输出短路、高端MOSFET短路或输出过电压)产生较差的保护。如表1所示,市面上的数字解决方案只对输出提供一个侦测点。当反馈路径由于元件性能降低、灰尘或潮湿而形成分割器时,输出电压将上升而不触发过压保护(OVP),因为没有第二个点来监测输出电压。这会轻易导致单点故障和对CPU的潜在损害。另外,它们使用的是估计方法来检测输入电流。这种方法速度慢且不能提供真正的灾难性故障保护(CFP)输出来指示消除输入源,以免发生发热事件[9,10]。相反,Intersil的方案有两个输出侦测点(VSEN和FB)来避免单点故障,以及真正的输入电流侦测来监测CFP,这可以对CPU提供出色的保护。

(8)制造和库存控制

全数字控制器需要非易失存储器(NVM)来存储配置信息,这些配置通常在出厂前已经编程。如果该器件用于不同的平台,其将需要不同的配置文件和库存批次。机市场非常活跃,需求会突然发生变化。一旦一种平台失去了市场,该平台的特定零件就不能复用于其他平台。带有不同配置的相同控制器可用于不同的平台,但常常会给售后服务制造困难,例如故障分析。数字解决方案使库存控制复杂化并增加了总成本。而混合数字控制器就没有这些问题;单个零件可用于或复用于不同平台,从而帮助简化制造控制和降低总成本。

(9)外置元件和PCB真实状态

数字解决方案使用集成度很高且昂贵的控制器,这些控制器常常使用很少的外置元件以及比模拟解决方案更少的PCB空间。但是,可用于机技术领域的核心和内存应用的数字控制器必须高速和经济,且常常并未集成所有功能。如表2(混合数字和全数字解决方案的外置元件比较)所示,数字解决方案消除了补偿网络,而许多其他功能仍然需要外置元件。例如,市面上的数字解决方案额外需要两个去偶电容(用于抑制噪声)以及不多几个L/DCR匹配元件。厂商A甚至需要4个NTC网络,用于热补偿和监测,并对完整的6+1解决方案需要更大的封装。数字解决方案可能在控制器周围需要更少的元件,但常常在功率系部分周围需要更多的元件,包括驱动器去耦、DCR侦测网络以及输入和输出滤波器,从而误导用户。

表2,计算机技术领域的混合数字与全数字6+1解决方案的外置元件
表2,计算机技术领域的混合数字与全数字6+1解决方案的外置元件



评论


相关推荐

技术专区

关闭