新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于PIC16C71的数字水温配制阀的设计

基于PIC16C71的数字水温配制阀的设计

作者:时间:2011-06-10来源:网络收藏

2.1 测温原理和参数选择
在图3中,热敏电阻RT为测温元件,用于测量出水口处的。一个固定电阻R16与热敏RT相串联组成分压电路,RT上的压降接到引脚通过电阻R17接AN0输入到的内置的8位A/D转换器,把模拟电压信号转换成信号,由程序读取实现测温。测温的关键是要选择合适的测温元件和合理的电路参数。这里选用的是一种负温度系数热敏电阻器(NTC),它采用玻壳封装、体积小、价格低,安装方便。NTC测温热敏电阻的主要优点是电阻温度系数大、灵敏度高、响应速度快,能进行精密温度测量,主要缺点是热电特性非线性现象严重。如使用C408503(25℃时,阻值50 kΩ,B值4 050 K,玻璃封装)NTC热敏电阻,在0~99℃范围内,电阻的灵敏度约为8 500~100 Ω/℃,非线性严重,使用时一般要进行线性补偿。这里通过计算,选择合理的测温电路参数,在有效的测温范围内,没有进行线性补偿,仅使用温度查表的方式就有效地解决了NTC测温电阻的非线性问题。下面讨论测温精度和电路参数的选择问题。
电阻R16与热敏电阻RT串联组成分压电路,对电源电压5 V分压,RT上的压降Vi=5 V·RT/(RT+R16)随温度变化而变化。该电压通过A/D的输入引脚AN0送入内部的A/D转换器,转换为信号,由程序读取使用。在RT上并接一个0.1 μF的电容C3实现滤波,用于消除干扰和噪声。在试用中发现,当选用的NTC热敏电阻(如标称值为10 kΩ)和分压电阻(如5.1 kΩ)的阻值较小时,热敏电阻在工作一段时间后易被击穿,而在选用阻值较大的NTC热敏电阻和分压电阻后,问题就较好地解决了。分析原因,应该是NTC热敏电阻中的工作电流和功耗较大造成的热击穿。因此应尽量选用阻值较大的NTC热敏电阻和分压电阻,尽量减小流过热敏电阻的电流。另一方面,考虑到PIC单片机的A/D输入信号引脚的输入漏电流最大为±500 nA,要保证A/D转换结果的正确,就要求损耗在信号源内阻上的电压不能超过10 mV(A/D基准电压为5 V时的1/2个LSB),这要求信号源内阻最大不要超过20 kΩ。当选用标称为50 kΩ,B25/50为4 050 K的NTC热敏电阻,其在温区(0~99℃)的阻值变化在168.3~3.217 kΩ之间。当选择固定分压电阻为20 kΩ时,A/D输入信号源的等效内阻是热敏电阻和分压电阻并联后的阻值,阻
值范围是17.9~2.77 kΩ,这可以满足A/D转换时,对信号源内阻最大不能超过20 kΩ的要求,对应的输入给A/D的信号电压Vi的范围在4.469~0.693 V之间,覆盖了有效的A/D输入电压值区间(0~5 V)的大部分,经8位A/D转换后对应的量在0xE5~0x23之间。在0~97℃温区,当温度变化1℃时,对应输入电压变化量在55.5~19.7 mV之间。均大于1 LSB对应的模拟电压值19.6 mV,因此8位A/D转换后测温的精度达到±1℃是有保证的;在97~99℃间。当温度变化1℃时对应的模拟输入电压变化量在18.8~18.5 mV之间,8位A/D转换测温精度达不到±l℃,但正常测温一般不会高于95℃。并且出水口温度控制在25~50℃也比较低。
以上分析说明不用加入输入信号的调理电路,也能满足测温精度±1℃的要求。A/D模拟输入引脚AN0串接R17用于限流保护,防止过压输入造成芯片损坏或出现硬件死锁的问题,因为它将直接影响到A/D模拟输入信号源的内阻和采样时间,R17的阻值不能太大,阻值选为1k-Ω。RT选用NTC热敏电阻的精度为50 kΩ±0.5%,其B25/50为4 050 K±1%,分压电阻R16选用热稳定性好的金属膜电阻,精度为20kΩ± 0.5%。
2.2 键盘输入和输出显示电路
输入电路时利用了的PORTB口具有软件控制弱上拉电路的特点。键盘查询电路由电阻R6、R7、R8,按键S1、S2、S3及电阻R12组成,通过引脚RB6、RB5、RB4查询按键的状态。RB4~RB6脚作为输入端时分别与按键S1、S2和S3相连,S1为温增设置按钮,S2为温降设置按钮,S3为手柄开关关联键。RB6、开关S3和R12组成用水状态查询输入电路,由RB6引脚输入用水状态。设定的用度由RB1~RB8通过限流电阻R5~R11后由二位LED数码管输出,RA1和RA2输出控制VQ1和VQ2作为LED数码管的位控。
2.3 直流电机驱动电路
三极管VQ3~VQ6的导通和截止由引脚RA3和RB0的输出电平控制,用于控制直流电机M的电源极性翻转。取样直流电机M的压降值送给PIC-16C71芯片的A/D转换器的另一输入通道,电机两端的电压降由R14、R15分压取样后由RA4引脚输入A/D转换器转换后由程序读取,用于判断电机位置和控制。

3 A/D数据的处理
测试中发现,若把PIC16C71的A/D转换后的温度数据不作处理就直接用于温度控制,会使电机不时出现误动作。即使在测温电路中加入了各种滤波电路,仍不见改善。因此推断该干扰可能来自A/D转换模块内部。考虑到该系统中现场温度的变化较缓慢,适合采用滑动窗口平均法进行数字滤波。在采用数字滤波方法对A/D转换后得到的连续16个温度数据进行平均后,有效消除了对A/D转换后的噪声。

4 结束语
该数字阀选用低压直流电源供电,以确保安全。出水开关和流量的大小用单手柄控制,用按键预置用水温度并由数码管显示,操作简单,可以在25~50℃之间对出水温度进行设置,分辨率是1℃。如果出水口水温和设定的水温不一致,则LED数码管闪烁显示以提醒注意,同时单片机根据两者之间的高低和差值的大小,产生脉冲控制电机的转速和正反转,通过传动机构带动混水阀,调整冷热水的进水比例。该水阀与家庭热水器配套使用,可自动快速调节出需要的水温,可以防止冷热水刺激,洗浴舒适,节水效果明显。

本文引用地址:http://www.eepw.com.cn/article/172684.htm

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭