新闻中心

EEPW首页 > 光电显示 > 设计应用 > FFS(边缘场切换)广视角技术

FFS(边缘场切换)广视角技术

作者:时间:2011-07-07来源:网络收藏

  在这三部分电路中,高压输出驱动电路部分是μPD16305芯片的核心部分,它为负载提供了高电压、大电流的输出,高压输出直接驱动PDP屏的显示单元,点亮被选中的象素。图2为μPD16305高压输出驱动电路图。

  图2中,A、B、C三路信号是由同一信号(锁存器输出的信号)经过分离得到的。它们分别输入到高压输出驱动块的三个输入端,其中A和B信号反相,A和C信号同相。

  当A=1、B=0、C=1时,N1、P1、N3导通,N2、P2、P3截止,输出OUT=0;
  当A=0、B=1、C=0时,N2、P2、P3导通,N1、P1、N3截止,输出OUT=VDD2。

  由图可知,这种输出结构不同于普通的互补输出结构。这种电路结构的优点在于:它可以用前级的数字电平,驱动后面的功率级电路,这对于普通的推挽输出结构来说,是根本达不到的。

  对于如图3所示的普通的CMOS互补输出结构,假设VDD2=200V、GND=0V、Vthn=15V、Vthp=-15V。若要使Vout=GND,即要使N管导通、P管截止,就需要满足①Vgs>Vthn;②VDD2-Vgs-Vthp。这样,栅极电压Vgs至少应该等于VDD2+Vdtp,即Vgs至少应为200-15=185V,这就需要在芯片中加入电平转换电路,将CMOS数字电平提升到可以驱动功率管的高电平。对于40路输出的μPD16305来说,可以想象它所点的体积将是巨大的,因而不利于芯片的集成。

2 μPD16305来说,PDP驱动电路中的应用

  μPD16305是一种CMOS结构的高压驱动电路,使用非常灵活。其输入可以是TTL电平,也可以是CMOS电平,高压输出调节范围可从0V~200V。其内部有一内置二极管,此二极管的阳极接在μPD16305的Vss2端,阴极接在μPD16305的VDD2端。由于PDP驱动电极(Y)波形出现有多种电压,所以驱动芯片μPD16305提供稳定、恒定的电源电压是不可能完成该波形的。解决多电源电压的方法是将μPD16305的高压电源和高压地“浮”起来运用,使驱动芯片的电源脚和地脚在不同时刻与同电压相接,从而使芯片输出符合相应的要求。

  在维持期里,所有Y电极的波形完全一致。但在寻址期中扫描寻址时,各行的Y电极有效时间不同,出现有多种电压。所以在维持期和寻址期,可以通过MOS开关管的不同状态,使驱动芯片的电源脚和地脚在不同时刻与不同电压相接,以得到所需要的波形。这种连接方式降低了输出级MOS管上的电压,应用起来有很大余地。

  在驱动PDP时,在维持期和寻址期的初始化阶段,利用的是μPD16305的全高或全低工作状态(可参见表3);而在寻址期的扫描阶段,利用的是μPD16305的移位工作状态,以实现逐行扫描。



  μPD16305作为行驱动器使用时,控制信号与μPD16305的具体连接方式如图4所示。

  μPD16305的控制信号中,信号R/L可直接接到低压电源VDD1上。因为在驱动电路中,只在逐行扫描阶段才利用了移位功能,而且移位是在朝一个方向进行的,因此没有必要增加额外的信号产生器,将期接至某一固定电位即可。

  其它的控制信号如A、CLK、STB、CLK等,可根据从PDP屏上测得的数据,用可编程逻辑器件来产生,这里我们采用的是Altera公司的FLEX10K10系列的芯片。



  电源信号和地信号是通过电平转换电路驱动功率MOS开关管提供的,电平转换电路的控制时序由CPLD产生。最终产生的驱动波形如图5所示。

  在实际应用中,要确保μPD16305所有的UDD1、VDD2、Vss1、Vss2管脚都要被使用,并且Vss1和Vss2必须接到同一电位上;由于μPD16305的管脚33在芯片内部被连接到了封装外壳上,所以必须保证此管脚开路,不能使用;为了防止器件发生闩锁效应,加电源时必须按照先加VDD1、再加逻辑信号、最后加VDD2的顺序进行;关断电源时,按照相反的顺序进行操作。


上一页 1 2 下一页

关键词: 技术 视角 切换 边缘 FFS

评论


相关推荐

技术专区

关闭