新闻中心

EEPW首页 > 消费电子 > 设计应用 > TD-SCDMA手机射频前端设计

TD-SCDMA手机射频前端设计

作者:时间:2009-07-23来源:网络收藏
图2是以放大器为例来说明交叉调制现象,混频器也有交叉调制现象。图2中f1频点处信号可认为是阻塞信号,假定其功率谱密度函数为矩形函数,频点f2处点频信号是所要的信号,由图中看到在输出信号频谱中f2处有三角型频谱出现,这也就是所说的交叉调制产物,该交叉调制产物大小与通道三阶截止点有关,当输入阻塞信号为平稳正态过程时,交叉调制产物功率可由方程3算出:

本文引用地址:http://www.eepw.com.cn/article/166924.htm

EQ3

即便频点f2处所要的信号不是点频信号,交叉调制产物依然存在,且电平大小同样由方程3给出,只是这时交叉调制产物的频谱形状不再是三角形,而是三角形与信号功率谱密度函数的卷积。上面得出的公式是基于正态噪声这一假设的,一般干扰信号与正态噪声相比更接近恒包络信号,交叉调制产物会小一些,当干扰信号为恒包络时,交叉调制产物为零。

图3:阻塞信号二次项成份
对系统的影响模型

3GPP规定终端当存在一个调制类型的干扰信号在±4.8MHz处,电平为-49dBm,系统灵敏度可下降3dB。如果我们认为灵敏度下降是因为交叉调制产物所导致的,只要交叉调制产物功率不大于灵敏度电平时的带内总噪声功率,则该指标就没有问题。假定接收通道噪声系数为标准所要求的最低指标9dB,由此可以推出该指标所要求的等效三阶截止点,该三阶截止点与输入阻塞信号的频率偏移量有关,因为接收通道包括信道选择滤波器。

EQ4

阻塞信号二次项成份对系统的影响模型如图3。阻塞信号的二次失真产物由三部分构成,当阻塞信号为平稳正态过程时,这三部分产物功率相等,功率大小图3已标出。注意图3中的公式是基于正态噪声这一假设的,一般干扰信号与正态噪声相比更接近恒包络信号,低频交流产物会小一些,当干扰信号为恒包络时, 低频交流产物为零。该干扰模型仅是针对零中频接收机而言,零中频接收机可简单等效成一个混频器,混频器输出包含本振频率与输入信号频率的各种组合分量,而该干扰模型即是输入信号的二次与本振频率零次的组合分量,该组合分量中的低频交流成份与直流成份恰好落在我们要的频带内,会影响系统性能。直流成份的影响也就是通常所说的DC-offset,MAX2392有专门的DC-Offset去除电路,而低频交流成份则无法去除。

3GPP规定终端当存在一个调制类型的干扰信号在±4.8MHz处,电平为-49dBm,系统灵敏度可下降3dB。如果认为灵敏度下降是因为阻塞信号二次项成份中的低频交流产物所导致的,只要该产物不大于灵敏度电平时的带内总噪声功率,则该指标就没有问题。假定接收通道噪声系数为标准所要求的最低指标为9dB,由此可以推出该指标所要求的等效二阶截止点,该二阶截止点与输入阻塞信号的频率偏移量有关,因为接收通道包括信道选择滤波器。

EQ5

MAX2392有四种工作模式,在没有干扰而且信号较弱时,建议采用HGML模式;上面阻塞指标所讨论的情况应该是信号很弱,而且有较强干扰,这时建议将MAX2392置为HGHL模式。通过讨论我们得到两个通道指标:IP2和IP3,关于IP3,下面所要讨论的双音互调指标会有更高要求。方程5给出了阻塞指标所要求的IP2应大于3dBm,图1的参考在该指标上有很大余量。

c)双音互调指标。无论是零中频接收机还是超外差接收机都会面临双音互调干扰问题。影响该指标的主要是混频器及前面各级有源器件,混频器后面电路因有信道滤波器的缘故,对此指标影响不大。3GPP规定终端当存在两个干扰信号,一个为调制类型的干扰信号,在±6.4MHz处,电平为-46dBm,另一个为点频类型干扰信号,在±3.2MHz处,电平为-46dBm,系统灵敏度可下降3dB。如果认为灵敏度下降是因为互调产物所导致的,只要该产物功率不大于灵敏度电平时的带内总噪声功率,则该指标就没有问题。假定接收通道噪声系数为标准所要求的最低指标为9dB,由此可以推出该指标所要求的等效三阶截止点,该三阶截止点与输入干扰信号的频率偏移量有关,因为接收通道包括信道选择滤波器。

EQ6

针对互调抑制指标所讨论的情况,MAX2392应设置为HGHL模式,在该模式下,图1所示参考完全能够满足该指标要求,且有一定余量。

接收机信道选择性要求

TD-SCDMA标准规定的与接收机线性幅频特性有关的指标包括:ACS、阻塞、杂散响应、交调抑制。阻塞与杂散响应点远离TD-SCDMA频段时,可通过选择的频段滤波器加以解决,对于频段内的阻塞干扰和杂散响应点,及双音互调干扰,是要通过信道滤波器加以滤除。对于超外差结构的接收机来讲,信道滤波器就是混频器后通常采用的声表面波滤波器。MAX2392是零中频接收芯片,它的信道滤波器是I/Q支路上的有源低通滤波器,这已集成在芯片内部而且指标很高。ACS是3GPP对接收机所规定的唯一的一个纯技术指标,它直接规定了接收机信道滤波器对邻近信道(±1.6MHz)的抑制程度为33dB。带内阻塞指标规定当±3.2MHz处存在-61dBm的调制干扰时,或±4.8MHz处存在-49dBm的调制干扰时,系统灵敏度允许下降3dB。如果认为灵敏度下降是因为阻塞干扰直接透过滤波器加到基带单元输入端口所导致的,而不考虑非线性和倒易混频的影响,只要透过去的干扰功率不大于灵敏度电平时的带内总噪声功率,则该指标就没有问题。假定接收通道噪声系数为标准所要求的最低指标(9dB),可以推出该指标所要求的信道滤波器带外抑制特性:

EQ7 EQ8

双音互调指标规定的两个干扰信号,一个是点频干扰,另一个是己调类型干扰,点频干扰其特征明显,基带很容易处理掉,这里只考虑已调干扰的影响,按与上面带内阻塞同样的分析方法可推出:

EQ9

至此,对信道滤波器带外抑制特性我们有了4个参数,即该滤波器对±1.6MHz通道相对抑制应不小于33dB,对±3.2MHz通道相对抑制应不小于43dB,对±4.8MHz通道相对抑制应不小于55dB,对±6.4MHz通道相对抑制应不小于58dB。MAX2392信道选择滤波器指标远远高于上述四点要求,关于滤波器的频响特性曲线请参考MAX2329数据手册。

相位噪声

TD-SCDMA标准没有明确提出收发信机相位噪声指标,但标准规定的很多其它指标与相位噪声有关:发射信号调制精度EVM指标与发通道锁相环的相位噪声有关,方程1给出了它们之间的关系,其实EVM主要还是由非线性指标所决定的,除非锁相环指标太差;接收机灵敏度与接收通道本振相位噪声指标有关,但灵敏度指标对相位噪声要求不高,即便是16QAM信号也是一样,影响灵敏度的主要还是加性白噪声;频率稳准度指标与收发锁相环指标均有关。频率稳准度指标好像在讲频率精确度问题,但仔细琢磨一下标准规定的测试方法,就会明白频率稳准度指标与噪声系数、接收发射通道本振相位噪声、基带单元频率估值算法有关。该指标主要取决于基带算法和发射通道锁相环相位噪声,图1所示参考中发射芯片MAX2507的锁相环是∑-△型锁相环,相位噪声指标非常高;阻塞指标、双音互调指标与接收通道本振相位噪声指标有关。阻塞指标、双音互调指标对系统的影响有一个途径就是倒易混频。在阻塞抑制指标和双音互调指标中都提到允许接收机灵敏度下降3dB,如果认为灵敏度下降的原因全部是由倒易混频产物导致的,则只要该产物功率不大于灵敏度电平时的带内总噪声功率,该指标就没有问题。仍假定接收通道噪声系数为标准所要求的最低指标(9dB),可以导出一个限制本振远端噪声底的指标:

EQ10

在阻塞及双音互调指标中提到的最大干扰功率为-46dBm点频信号,偏离有用信号中心为3.2MHz,将该值代入上式,得到关于接收机本振相噪的一个指标:本振相位噪声在偏离中心3.2MHz外,必须优于-119dBc/Hz。MAX2392在该点处的相位噪声远优于此最低要求。

零中频接收机与DC-Offset

但凡零中频接收机都有DC-offset问题,DC-offset的产生有这样几个原因:本振自混、混频器偶次项非线性失真产物、平衡混频器正反向导通时间不相等、平衡混频器负载不平衡等。不管是怎样产生的,重点是去除该直流偏移量。对于一个电路来说,它要除去直流分量而保留交流分量,那么它必然是一个高通型滤波器,应该如何设计这一高通滤波器,又如何方便地调整滤波器参数?一般有三种情况:一是采用固定高通滤波器,以不变应万变,其优点是简单,缺点是响应时间长;二是采用一个高拐点的高通滤波器,该滤波器只是在特定时间起作用,响应速度快,响应完后电路记住其响应终值,然后利用该终值去对消通道上的直流偏移量,其缺点是环境改变后,记录的以前的响应终值无法对消直流偏移量;三是灵活改变高通滤波器的拐点,很明显它综合了上述两种方法的优点。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭