新闻中心

EEPW首页 > 消费电子 > 设计应用 > 触摸技术设计深入剖析

触摸技术设计深入剖析

作者:时间:2011-05-28来源:网络收藏
三大

本文引用地址:http://www.eepw.com.cn/article/166153.htm

  阻性:阻性是最常用的触摸屏技术。用于高业务流应用,并对屏幕上的水珠和其他残留物具有免疫能力。阻性触摸屏通常是成本最低的解决方案。由于是对压力起反应,可以用手指,带手套的手,触摸笔,或者像信用卡这类的其它的物体进行触摸。

  表面容性触摸技术:表面容性触摸技术提供的显示清晰度比阻性触摸中通常所用的塑料膜要清晰得多。在表面容性显示中,位于显示器四个角落的传感器检测由于触摸引起的电容变化。这类触摸屏可以用手指或其他容性物体实现触摸激励。

  保护性容性触摸:保护性容性触摸是最近才进入市场的一种技术。该技术也能提供优异的透光性,但它还具有一些比表面容性触摸好得多的优点。投影型容性触摸不需要位置校准,并能提供高得多的位置精度。投影型容性触摸还有另外令人激动的地方,那就是它同时能够支持多点触摸。

  触摸屏工作原理

  我们将了解一下两个最常用的触摸屏技术。使用最广泛的技术是阻性触摸。绝大多数人可能以前都在银行的ATM机上、许多商场里的信用卡检查机、甚至是在餐馆里输入一个订餐单时用过这类阻性触摸技术。而投影型容性触摸屏,使用的范围还没有这么广,但具有快速发展动力。许多采用投影型容性界面的手机和便携式音乐播放器都在投放市场。无论是阻性或容性技术都有一个坚固的电组件,都利用ITO(氧化铟锡,透明导体),这两种技术都会长期使用。

  阻性触摸屏包括有一个柔性顶层,然后是一层ITO,一个空气隙,然后是另一层ITO。面板有4根线附到ITO层上:“X”层的左右侧各一根,“Y”层的顶端和底端各一根。

  当柔性顶层受压接触到下面一层时检测到触摸。触摸的位置按如下两步来测量:首先,“X右”被驱动到一个已知电压上,而把“X左”驱动到地,读取来自Y传感器的电压。这样就提供了X坐标。对于另一个坐标轴重复这一过程,即可确定精确的手指位置。

  阻性触摸屏还有5线和8线型。5线型用更耐用的低阻“导体层”来代替最上面的ITO层。而8线面板则通过对面板特性的更好校准来实现更高的分辨率。

  对于阻性技术来说有几个缺点。柔性顶层只有75%-80%的透光度,而且阻性触摸屏测量过程中也有较多的误差源。如果ITO层不一致,电阻在传感范围将不会线性变化。需要10-12位的测量电压精度,这在很多环境中都是困难的。为了将触摸点与下层的LCD图像对准,许多现有的阻性触摸屏都需要周期性的校准。

  反之,投影型容性触摸屏没有活动部件。在LCD和用户之间只有ITO和透光度几乎为100%的玻璃板。投影型容性传感硬件包括一个玻璃顶层(见图2),下面是一个X传感器阵,一层绝缘玻璃,再下面是位于玻璃基片上的Y传感器阵。面板连接到每一个X和Y传感器,故5 x 6的面板共有11根连线(如下面的图3所示),而10 x 14面板则有24条传感器连线。

  

触摸技术与设计技巧浅析

  图2:用于“阻性屏”(左)和“容性屏”(右)的堆叠层

  当手指或其他传到物体接近屏幕时,在传感器和手指之间产生一个电容。虽然该电容相对于系统中的其他电容比较小(大约是20pF中的0.5pF),但还是可以利用集中技术测量出来的。其中一种技术就是利用赛普拉斯半导体公司被称作为CSD的PSoC器件。它包括快速对电容器充电,然后测量对一个放电电阻的放电时间。

  一个投影电容传感器阵列的目的是在同一时间使手指能够与多于一个的X传感器和一个以上的Y传感器发生作用(见图3)。这是的软件能够通过内插来非常精确地确定手指的具体位置。例如,如果传感器1,2,3感应出的信号强度分别为3,10和7,则手指的中心位置应该位于(1*3+2*10+7*3) / (3+10+7) = 2.2处。

  

触摸技术与设计技巧浅析

  图3:行和列传感器的信号强度确定了触摸的位置

  因为投影型电容面板具有许多个传感器,因此结合其他技术,可以同时检测多个手指。实际上,投影型电容可以同时检测高达10个手指。故可以实现激动人心的一些基于多个手指按压的新应用。试想,你能够在手机上弹钢琴吗?在PDA上用多个手指同时玩游戏又如何?

  毫无疑问,触摸屏具有极好的外观。它们开始定义一个新型的用户接口以及全球范围内正在广泛接纳的工业标准。从心律监视器到最新的all-in-one打印机的各种设备中,触摸屏都正在快速地变成技术标准。但在美好外观之外,触摸屏还提供难以匹敌的安全性能,抗恶劣气候性能,耐磨性,并能利用像多点触摸这类新触摸技术来开辟一个全新的市场。利用触摸技术可以实现许多种类的产品,因此设计师就必须理解该技术的生态系统和目前所采用技术的可用性。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭