关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于ADN8830的非制冷红外焦平面温度控制电路设计

基于ADN8830的非制冷红外焦平面温度控制电路设计

作者:时间:2010-03-18来源:网络收藏

(4)短路电阻R7并加入电容C11使TEC两端的电压开始出现振荡,这时可以减小电容C11或者重新接入电阻R7使TEC两端的电压稳定;
(5)改变TEMPSET的电压值来调节TEC两端的电压稳定时间,TEMPSET的变化约在100 mV,然后减小电容C11,C9和电阻R7从而减小稳定时间,但是会造成输出电压过充;
(6)添加与R6和C9并联的反馈电容C10,反馈电容C10在不增加稳定时间的前提下能够提高系统的稳定性。一般330 pF~1 nF的电容比较合适。
本文设计的电路利用图3的PID网络结构,当C9=22μF,C10=330 pF,C1l=1μF,R7=1.388 MΩ,R5=1.092 MΩ,R6=175 kΩ时,系统从环境温度改变到目标温度的建立时间在10 S以内,精度可达0.01℃,并且能保持长期稳定。


3 性能测试
实验测试是在室温下进行的,图4中所示的信号为的管脚30(TEMPOUT)的电压变化,其电压的变化与传感器探测到的温度变化相一致,因此可以从此电压变化的特性得到温度变化的特性。如图4所示可以看到经过8.4s,电压稳定在预设电压1.45 V上,也就意味着温度从环境温度改变到目标温度25℃的建立时间为8.4s,且过充较小,并达到了稳定。该电路具有正常工作指示和工作失效报警指示功能。当热敏电阻检测到的温度达到设定温度(本电路设定温度为25℃)时,的管脚5(TEMPLOCK)输出高电平,表示非的工作温度已达设定温度,此时发光二极管D1发光;当管脚1(THERMFAULT)输出高电平时,表示电路工作异常,发光二极管D2被点亮。


4 结 语
本文设计的的非电路效率高、功耗低、体积小,通过实际应用证明能够把在预设温度上,并且精度可达0.01℃。通过几个简单的电阻电容构成的外部补偿网络能够在10s内把温度控制在预设温度上,并使整个温控系统保持长时间稳定工作状态。

半导体制冷相关文章:半导体制冷原理


红外热像仪相关文章:红外热像仪原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭