关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > DPA-Switch系列集成控制器在小功率DC-DC变换器中的应用(一)

DPA-Switch系列集成控制器在小功率DC-DC变换器中的应用(一)

作者:时间:2012-03-19来源:网络收藏

3.1 Control引脚的工作过程

的Control引脚呈低阻抗状态,可同时接受供电和反馈混合信号。在正常工作状态下,芯片内部的分流调节器会将反馈信号从混合信号中分离出来。Control引脚上的电压Vc用于向芯片内部的控制电路供电,包括为输出MOSFET驱动器供电。实际当中,需在Control引脚和Source引脚之间接一只旁路电容,以提供MOSFET的栅极驱动电流。该电容的大小将对自动重启动时间和控制环路补偿产生影响。

在启动过程中,当直流输入电压施加在Drain引脚上时,输出MOSFET处于关断状态,接在Control引脚上的电容通过芯片内部在Control引脚和Source引脚之间的高压电流源进行充电。当Contro引脚上的电压Vc上升至5.8V左右时,控制电路开始工作,系统进入软启动状态。软启动电路使占空比由零逐渐上升至最大值,这一过程将持续大约5ms的时间。软启动过程结束时,高压电流源关断。如果此时Control引脚上没有反馈-供电混合信号出现,软启动电容将开始放电。如果设计正确,且系统不存在开环或过载等故障,在Control引脚上的电压放电至4.8V的欠压锁定之前,外部反馈环路将向Control引脚提供电流,以维持对Control引脚上电容进行充电。当电容电压充至5.8V的分流调节器阈值时,超过芯片正常工作所需电流的富余部分将通过电阻RE分流至Source。该电流控制MOSFET占空比的大小,以实现闭环控制。分流调节器的输出阻抗ZC相当低。如果采用原边反馈结构,该阻抗的大小将决定误差放大器的增益。控制环路的主极点将由控制引脚的动态阻抗Zc和接在Control引脚上的外部电容共同决定。占空比与Control引脚电流之间的关系如图3所示。

9.gif

当系统出现开路或过载故障后,外部流入Control引脚的电流受到影响,接在Control引脚上的电容开电。当电容上的电压降至4.8V时,自动重启动电路开始工作,输出MOSFET被关断,控制电路进入小电流待机状态。此时高压电流源开启,重新对外接电容进行充电。芯片内部的滞回比较器通过控制高压电流源的开启和关断,使VC始终保持在4.8V-5.8V这一窗口电压范围之内。在自动重启动电路中包含一个八分之一分频器,该分频器确保MOSFET在经过8个充/放电周期之后才会再次开通。这样一方面能够有效降低的功耗,另一方面由于自动重启动周期内的占空比仅为4%,系统在该过程中向输出端传输的也大大降低。故障排除,系统恢复正常后,自动重启动周期才会结束,否则该过程将一直持续下去。的典型工作波形图如图4所示。

10.gif

3.2 振荡器和开关频率的选择

DPA-Switch芯片内部的振荡器通过对内置电容器的充放电,生成PWM所需的锯齿波。PWM和限流调节器的门限值由振荡器在每个工作周期初始阶段设定。

通常开关频率应设为400KHz,此时应将Frequency引脚与Source引脚相连。在某些情况下,如采用次级同步整流时,需要将开关频率设得低一些。此时需要将Frequency引脚与Control引脚连在一起,这时的开关频率将为300KHz。

3.3 PWM和最大占空比控制

DPA-Switch芯片采用的是电压控制模式,生成的PWM脉冲宽度与流入Control引脚的那部分富余电流成反比。这部分超过芯片正常工作所需的富余电流通过电阻RE转化为电压后作为反馈误差信号送入PWM比较器。该信号经过一个转折频率为30KHz的RC网络滤波,去除芯片内部输出MOSFET产生的开关噪声信号的干扰后,与内部振荡器发出的锯齿波信号相比较,最终生成PWM驱动脉冲信号。随着控制电流的上升,占空比逐渐下降。输出MOSFET的开通阈值由振荡器时钟信号决定,PWM能够将该阈值复位,并使输出MOSFET关断。这里需要注意的是,在占空比开始变化之前,Control引脚上必须注入控制电流。

DCMAX是最大占空比,其默认值的典型值为75%。如果在Line-Sense(L)引脚和直流输入端之间增加一只特定阻值的电阻,当输入电压升高时,DCMAX将由75%下降至33%。

3.4 最小占空比和周期跳越控制

负载发生变化时,占空比也将随之发生改变。占空比的变化与Control引脚上的电流成反比。当Control引脚上的电流上升时,占空比将线性下降,直至最小占空比DCMIN。当占空比达到DCMIN时,如果此时Control引脚上的电流继续上升2mA,PWM控制器会强行将占空比由DCMIN逐步降至0。这一特点保证了在负载所需低于DC MIN状态下的传输时系统工作在周期跳越模式。由正常工作状态转至周期跳越状态是系统自动完成的,无需任何附加控制。随着负载所需功率的上升或下降,系统将根据实际需要在正常工作状态和周期跳越状态之间进行转换。当然,如果需要也可以将周期跳跃这一功能去掉。具体做法是在输出端上接一个很小的负载,使占空比始终维持在DC MIN之上即可。

dc相关文章:dc是什么




评论


相关推荐

技术专区

关闭