关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 生物医学电子学领域的医疗传感器(二)

生物医学电子学领域的医疗传感器(二)

作者:时间:2012-05-11来源:网络收藏

另一个关键点是,系统采用的是负压呼吸原理。即通过横隔膜的收缩,使肺内压力低于大气压,让空气流入。这在生理上是正确的,也是我们现在呼吸的原理。正压换气(无论是面罩还是机械换气机)都是压气,既不自然,也有患VAP或换气相关肺炎的高风险。VAP是呼吸机依赖病人再次入院的最常见原因。降低再入院率(减少Medicare/Medicaid为他们支付的费用)是最近改革的焦点之一。见图7和图8.

图7,呼吸起搏器带有用于膈神经刺激的植入电极以及RF接收器,还有向植入体发射RF信号的外部天线,完成刺激起搏功能
图7,呼吸起搏器带有用于膈神经刺激的植入电极以及RF接收器,还有向植入体发射RF信号的外部天线,完成刺激起搏功能

图8,呼吸起搏器的基本功能框图
图8,呼吸起搏器的基本功能框图

对于下一代装置, 新的发展甚至采用血管电极的较少侵入性方法,适用于采用局部麻醉经皮插入的病人(任何需要接触内部器官或其它组织的过程都通过经皮肤的针刺穿透,而不采用暴露内部器官和组织的切口方案),膈神经可以通过电致运动,保持横隔膜的强度与抗疲劳能力,改善呼吸,以及尽早脱离MV的可能性。一旦通过FDA和相关机构的批准,这一技术还可缩短ICU停留时间,降低死亡率,并减少医院的费用。

通过采用这种最少侵入性技术的正确膈神经刺激,可以产生有节奏的隔膜收缩。膈神经刺激的阈值电势是1.26V.封装电极激活神经所需电流预计不到引线型电极的三倍。一般采用180μs脉冲周期的平衡双相脉冲。

新型商用与手持设备(如iPhone、Blackberry与iPad)的微电路创新要求有低成本、小体积和低功耗。这些努力传播到电子,带来了更多神奇的解决方案,可改善植入体,并通过非接触性刺激和检测装置,如感应电源与数据传输,以及低功耗RF器件,最终消除对大多数植入体的需求。

附文

飞思卡尔公司内科、外科医师兼电子工程师Jose Fernandez Villase?or博士表示:无论是外科技术还是用于控制(DBS)起搏器的电路与软件,都永远存在着改进的空间。电子电路尤为重要,因为它们必须准确地探测病人大脑细胞何时发生问题,从而决定何时做补偿,何时不做。我相信需要研究新的控制软件,提高和处理单元的精度,以减少并发症的可能性。他继续说:作为技术提供者,我们只希望通过建立尽可能有效而安全的解决方案,从而加快这个过程。

以下引用一段TimDenison有关Medtronic 方案的评论: 神经接口是一个相对较新的,还有很多我们不知道的东西。Medtronic 将人机接口技术的发现、发展与部署作为一个参与的过程。我们已经开放了共享的模型,因此我们可以加入全球最好的科学思想,在短期内开发出实现下一代疗法的新工具,以治疗慢性、退化性疾病,比如帕金森症,经过一段时间,可能在解析大脑信号基础上,产生新的治疗方法。


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭