关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 单极性PWM技术在雷达天线控制中的应用

单极性PWM技术在雷达天线控制中的应用

作者:时间:2013-08-22来源:网络收藏

1.2 驱动和功率转换电路设计
脉冲分配电路产生的脉冲,送入半桥驱动器放大。如图2所示,国际整流器公司生产的IR2308和由IGBT组成的H桥驱动和功率转换电路。IR2308在驱动高端栅极时,必须外接自举二极管和自举电容,当Vs脚通过低端IGBT和电机负载拉到地时,自举电容由直流+18 V通过自举二极管对电容充电;低端IGBT关断时,电容通过IR2308的内部推挽结构经HO脚对高端IGBT栅极充电,使其饱和导通。IR2308内部死区保护单元为IGBT开关延时提供了死区时间,消除了“直通臂”的现象。在正常工作时,由于对侧低端的IGBT始终开通,故此时自举电容可以通过电机负载对地充电,减小了因对高端栅极的充电导致的自举电压降的波动,可以看出这是一个的过程。
1.3 自举元件的计算
自举元件参数的选择对自举效果存在重要影响。以下方程详述了自举电容提供的最小充电电荷:

其中:Vcc为逻辑电路部分的电压源,Vf为自举二极管的正向压降,VLS为低端IGBT上的压降,VMin为‰与Vs之间的最小电压。自举电容漏电流ICbs(leak)仅与自举电容是电解时有关,如果采用其他类型的电容,则可以忽略,因此尽可能使用非电解电容。自举二极管必须能够承受线路中的所有电压;在图2的电路中,当高端IGBT导通并且大约等于母线电压Vbus时,就会出现此现象。自举二极管的高温反向漏电流特性在那些需要电容来保存电荷-段延时时间的应用中是一个重要的参数。同样,为了减小由自举电容馈入电源的电荷,应选用超快速恢复二极管。推荐自举二极管的特性如下:最大反向电压:VRRM≥母线电压Vbus;最大反向恢复时间:trr≤100 ns;正向电流:IF≥Qbsf。

2 实验验证
2.1 实验方法和器件参数选取
本实验由TI公司的TMS320LF2407A DSP自身的PWM发生器产生频率f=20 kHz的脉冲宽度调制信号,PWM的占空比可调范围为0%~90%,同时使用I/O口输出方向信号;电动机采用100 V/2 A的直流伺服电机,电枢回路总电阻Ra=8.1 Ω。
使用H桥电路驱动100 V/2 A的直流伺服电机,所以要求H桥的母线电压Vbus是100V,流过各开关的最大电流为2 A。因此电桥使用的IGBT的集电极一发射极间电压VCES的绝对最大额定值应该大于100 V,集电极电流IC的最大额定值在2 A以上。对于电动机这样的感性负载,当驱动电压突动机产生的反电动势烧坏开关器件,在H桥各开关中必须接入续流二极管,用于吸收反电动势。很多开关用IGBT在集电极和源极之间内藏续流二极管,因此二极管的应该满足峰值恢复电流Irr大于2 A(100 V/2 A的直流伺服电机),反向电压UR应该大于H桥供电电压100 V。仙童公司生产的IGBTFGA25N120满足上述要求,参数裕量很大,如表1所示。将表1中相关参数带入公式(1)得出自举电容提供的最小充电电荷Qbs=612.5 nC,代入自举二极管正向电流公式即可计算出自举二极管正向电流Ip≥12.25 mA,综合考虑上面推荐的自居二极管特性,我们选用HER207。将最小充电电荷Qbs带入公式(2)得到最小的自举电容值C≥113.4 nF,选用220 nF的高压瓷片电容。

本文引用地址:http://www.eepw.com.cn/article/159273.htm

e.JPG


2.2 雷达天线实际应用中的效果
如图2所示,H型的电机电枢两端平均电压可以表示为:
UAB=τ(Vbus-2VCE(sot)),τ为占空比 (3)
当τ=0%时,此时UAB=0 V,电动机停止转动。测得逻辑控制端,HIN1=0、LIN1=0、HIN2=0、LIN2=0,此结果与图3(c)仿真逻辑一致。因为此时H桥的4个IGBT全部关断,故此时不存在开关损耗;尽管电动机存在内部电阻,但此时没有电流流过H桥,电动机也不消耗能量。当τ=100%时,其结果与τ=0%时完全相同。当τ=90%时,这个时候电压的占空比很宽,天线处于一个比较高的转速,测得流过电机电枢平均电流Iov为1.72 A,由(3)计算出电枢两端平均电压UAB=86.4 V,那么电源输入功率为:
Pout=UABIov=86.4Vx1.72 A≈148.61 W (4)
电枢回路总的铜损耗为:
Ploss=Iov2Ra=(1.72 A)2x3.91 Ω≈23.96 W (5)
此部分能量浪费在电枢内部电阻上,转变为热能。由直流电动机稳态运行时的基本方程式:
UAB=Ea+EovRa (6)
其中:Ea为电动机的感应电动势式(6)两边同时乘以Iov:
UABIov=EaIov+Iov2Ra (7)
即:Pout=PM+Ploss (8)
故电磁功率为:
PM=Pout-Ploss=148.61 W-23.96 W=124.65 W (9)
此部分功率由电功率转换为电磁功率,从而拖动天线,测得天线的实际转速n=6 r/min。此时的转换效率为:
f.jpg
H型的电机电枢两端的平均电压可以表示为:
UAB=α(Vbus-2VCE(sot)-(1-α)(Vbus-2VCE(sot))=(2α-1)(Vbus-2VCE(sot)),α为占空比 (11)
当α=50%时,此时UAB=0 V,电动机停止转动。但是此时电机电枢两端的电流是交变通断的,因此会消耗功率电枢内部电阻上,同时IGBT由于每个周期的交替导通和关断,会存在4个IGBT开关损耗。与占空比α=90%相对应的占空比为UAB=95%,此时电枢两端平均电压=86.4 V。但在一个开关周期里,比电路要多出两个IGBT开关损耗,同时电枢内部电阻在整个开关周期里都消耗功率。因此可以发现,双极性PWM较单极性PWM电路在拖动天线时,浪费在开关损耗和铜损上的功率更多,从而导致转换效率的降低,也降低了天线的转速。

3 结论
上面设计的H型单极性PWM电路,克服了双极性PWM电路在电机停止转动时仍然有损耗的缺点;在电机运转时,功耗也相应减小,提高了转换效率,进一步提高了转速。目前,市场上类似的H桥驱动器也能够完成上述功能,比如美国国家半导体的LMD18200。但是类似的集成芯片母线供电电压一般较低(一般只有几十伏)、功率有限、而且价格昂贵。文中设计的电路,仅通过增加逻辑实现H型单极性PWM功能,母线供电电压可高达上百伏。

pwm相关文章:pwm原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭