新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 一种高性能、低功耗、超小型FSK无线寻呼射频接收机

一种高性能、低功耗、超小型FSK无线寻呼射频接收机

作者:时间:2009-07-16来源:网络收藏
(3)第一下变频器和第一本振及21.4MHz的第一中频晶体滤波器和放大器

本文引用地址:http://www.eepw.com.cn/article/157980.htm

  将载波信号变换到21.4MHz的第一中频经滤波放大后,送入第二混频、本振和中频放大及鉴频专用集成电路。本文采用了低本振方案,这级电路中的关键是选用的混频和振荡晶体管以及合适的电路拓扑,下变频器采用了载波信号和本振信号由基级输入,中频集电极输出的共发电路,合适的偏置条件使其仅需要小的本振信号电平,便获得好的变频增益和较低的噪声系数,本振电路采用了低电压和低电流条件下可稳定振荡电路及温度补偿电路。 21.4MHz滤波器采用了常规的邻道抑制滤波器,其后为低的中频放大器。

(4)第二混频、本振和中频放大及鉴频专用集成电路

  完成变频到455kHz及经过455kHz邻道抑制陶瓷滤波器与21.4MHz邻道抑制滤波器一并保证邻道抑制指标,在455kHz频率上鉴频放大后的信号经基带滤波和差分放大以不归零的信号输出,经电平匹配后送入解码器。

(5)各级电路间的匹配设计

  对保证优异的灵敏度、镜像抑制度和邻道抑制度至关重要,须精心匹配和实验。

(6)各级电路的设计

  为保证低功耗要求,同时又要保证各级的电性能指标,因此必须合理分配各级功耗指标。的工作电压为1V~1.6V,各级工作电流分配如下:(1)低噪声放大器:约0.6mA;(2)第一本振:约0.6mA;(3)第一下变频器:约0.3mA;(4)第一中频放大器:约 0.3mA;(5)第二混频、本振和中频放大及鉴频专用集成电路:约0.7mA。余出约0.5mA考虑各批次晶体管参数的差异和偏置电阻值的容差范围。

(7)抗的内部干扰设计

  的内部干扰主要来自CPU、DC-DC变换器和液晶显示电路。这些内部干扰严重影响接收机的灵敏度、镜像抑制度和邻道抑制度的指标。解决的方法是如何将干扰源减至最小和接收机电路如何实现有效的抗干扰。如何将干扰源减至最小的问题与数字电路、电源变换电路、液晶显示电路及软件相关,不属于本文讨论范围,而射频接收机电路本身如何实现有效的抗干扰主要采取以下措施:(1)在空间相对位置总体结构的设计中,要考虑载频的小信号区域尽可能远离干扰源;(2)数字电路地和射频电路地之间采用隔离、滤波措施减小射频电路和干扰源之间的耦合;(3)对敏感部位必要时采用地屏蔽的方法。

3性能及应用

基于上述考虑和讨论的方法,所研制的无线寻呼射频接收机用于广东省移动通信总公司及中山广华公司联合研制的讯灵通KW系列(KW8000、 KW9000和KW9000S)的中英文寻呼接收机,经国家权威部门测试(在152.650MHz和280.625MHz频率下),获得了连续5次无误码灵敏度的电平:-110dBm;

邻道抑制度:≥70dB;镜象抑制度:≥70dB;电性能优异。相应射频接收机的功耗为:射频接收机工作电压1V~1.6V,接收状态下工作电流≤3mA,体积:9.8mm

×48mm×12.8mm(KW8000)。实际应用实验表明在信号场强较弱时,国外同类产品均无法正常接收,而采用本文介绍的无线寻呼射频接收机的中英文寻呼机均能正常接收。国家权威部门的测试和实际应用结果均表明,采用这种无线寻呼射频接收机的中英文寻呼机的电性能远优于国外同类产品。

4结语

本文介绍了一种、低功耗、的无线寻呼频率键控()数字调频射频接收机。国家权威部门测试和实际应用结果均表明,采用这种无线寻呼射频接收机的中英文寻呼机,电性能远优于国外同类产品。本文所讨论的许多实际技术问题及解决的方法和思路,在本文介绍的无线寻呼射频接收机研制和批量生产中,已证实非常有效。对同类和类似产品提高电性能、降低功耗和抗内部干扰设计或许有着重要的参考价值。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭