新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 利用混合信号设计概念提升短距离无线传输系统的性能

利用混合信号设计概念提升短距离无线传输系统的性能

作者:时间:2009-11-20来源:网络收藏

假如仔细研究我们的射频参考系统,我们可以发现建构于声表面波(SAW)谐振器之上的射频发射器的起始频率准确度很差,其频率误差范围约为±150千赫,同时我们也发现因为温度的关系也使其频率稳定性很差。这导致发射器载波频率补偿较大,进而迫使接收器具备较宽的频道滤波器。大的频宽使得多余的噪声进入系统中,进而降低了整体的灵敏度以及传输距离。

一个可能的解决方案是采用基于晶振的锁相回路(PLL)来取代基于声表面波(SAW)的发射器。这个解决方案可以显著地改善发射器的频率准确度,进而通过降低接收的频道滤波器的频宽来改善传送的距离。另外一个选择是用带有集成DSP或是有数字处理能力的解调器的射频接收器来取代标准的模拟射频接收器。这种接收器方法的好处是,通过使用最小化频宽的有数字处理能力的滤波器来追踪基于声表面波(SAW)的发射器频率补偿,并因此来降低噪声。因为CMOS技术的持续改善以及规模经济的缘故,射频接收器的成本比模拟射频接收器的成本更低。另一个改善接收器灵敏度的方是就是使用天线分集。这些技术从不同天线的射频信号中,使用其额外的振幅及/或相位信息来改进接收器的灵敏度。混合信号集成电路因为具有处理来自所有天线大量信息的能力,因而被广泛运用在这些接收器上。

降低功率消耗

在任何通讯系统中,如何增加电池的寿命或是降低功率消耗,一直是研究的重点。在我们的遥控车门开关(RKE)系统的案例中,降低发射器的功率消耗就是等于增加密钥的电池寿命。降低接收器的功率消耗,意味着消耗较少的汽车电池能量,这一点当汽车处于停车或是闲置不用时,显得尤为重要。多数的汽车制造商,对于在车内的遥控车门开关(RKE)接收系统,所需的平均电流约定义在小于2毫安。目前现有的解决方案是通过将接收器设定在一个较低的占空比轮询(Polling)或采样模式,来达到低平均电流的要求。

图2:通过调整占空比轮询方式来降低平均电流消耗值。
图2显示了通过让接收器在一个低占空比的模式之下来降低平均消耗电流的轮询基本。大多数时间,接收器是处于休眠模式,仅维持着足够记录休眠时期(区域1)所需的最小电流。它会周期性的进入一个采样模式(区域2),在这里模拟射频接收器会开始工作,并通过观察输入的接收信号强度指示(RSSI)水平并且与预先设定的门限值做比较,来决定是否有已进来的传送信号。在这个例子中,发射器将同一信息包传送了两次(传送接收率为二),同时调整接收器的采样和休眠时间的选择,确保使接收器至少可以在两次传送信息包期间至少可以采样到一次,从而避免漏失掉任何信息包。

假如输入的接收信号强度指示(RSSI)超过了预设标准时,模拟射频接收器将会开始运行微控制单元,来进一步处理进来的信号(区域3)。但是这种方法有一个问题,就是每次当接收信号强度指示(RSSI)超过了预设标准时,他并不会检查这些进来的信号是不是从预期的发射器所来的,就直接唤醒了外置的微控制单元。而混合信号集成电路则有着信息包或是地址证明,所以在中断并唤醒微控制单元(区域4)之前,他会确认传送信号对于接收器而言,是否属于预期中的?如此一来,将可节省一部份功率。这对于那些需要长时间将车停在诸如机场等忙碌且拥挤的停车场等应用来说,能够切实节省功率。

表1:针对RKE发射器所做的一个电池寿命计算范例。

在传输器部分,主要目标便是要极大化电池寿命,可以通过采用具有低操作电压和低漏电流的混合信号IC达成此目标。表1为计算某假设的RKE发射器的电池寿命的范例,此发射器具有15 mA传输电流、在数据速率2.4 kbps时的信息包大小为136位、发射重复率2,并且假设每天会按压按键20次,使用容量为210ma/hr的CR2032钮扣型电池,且总泄漏率为2uA/H (17.52 mAH/yr)。在此范例中,此电池寿命超过10年以上,二且受限于来自休眠模式的漏电流及发射器的漏电流,以及电池本身的漏电流。为减少漏电,发射电路仅在按键按压后才会启动,且在发射后必需自动断电。使用混合信号技术能轻易实现此按键按压唤醒的特性,使用大型的CMOS开关能实质连接及切断发射器电压至电池或接地的连结,从而降低漏电流。



评论


相关推荐

技术专区

关闭