新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 高频变压器传递低频电功率技术的研究

高频变压器传递低频电功率技术的研究

作者:时间:2011-03-17来源:网络收藏

2.2控制部分工作原理

本文引用地址:http://www.eepw.com.cn/article/156577.htm

控制原理框图及各点电压波形如图4所示。vc为待放大的调制信号(如50Hz正弦波信号),vt为单极性等腰三角形载波信号(如20kHz三角波)。为实现vg1~vg4各点波形,采用以下控制策略。

1)把调制信号vc与载波三角波信号vt相比较,得到与vc同频率的单极性SPWM信号vg1;

2)把调制信号vc经过零比较器比较,得到与vc同频率的低频开关脉冲信号vg3;3)把低频信号vc反相得到与vc同频率的调制信号-vc,再用-vc与载波信号vt相比较,得到与vg1同频率的相位差的单极性SPWM信号vg2;4)把调制信号-vc经过零比较器比较,得到与vg3同频率的相位差的低频开关脉冲信号vg4。

2.3主电路拓扑

图5所示为传统的带复位绕组的单端反激变换器,复位绕组N2的匝数等于绕组N1的匝数。当开关管V导通时,D3反向阻断,储能。在V关断时,D3导通,的储能向负载Zl及滤波电容Cf输出;D2导通,N2作为复位绕组将变换器的漏感储能回馈到电源U中,并箝位V上的Uds为2U。

图6所示为新型DC/AC传输电路拓扑结构。N1、V1、N3组成一单端反激变换器,它与由N2、V2、N3组成的另一单端反激变换器构成双组合式单端反激变换器,并在控制信号周期的正负半周受vg1、vg2高频SPWM脉冲的控制分别斩波导通。V3、V4组成双向高频整流器,在控制信号周期的正负半周分时导通,并相互与对方体内寄生的并联二极管构成整流电路。

电路处于低频AC正半周时(vg1~vg4信号波形


图4控制原理框图及各点电压波形图


(a)V1开通时等效电路图


(b)V1关断时等效电路图


图8三角形法生成SPWM波

参见图4),vg2=0,V2处于关断状态,vg3为高电平,V3处于导通状态。在高频脉冲周期内,当vg1高电平加到V1门极上时,其等效电路如图7(a)所示。原边,V1随门极施加的高电平导通,电源U、绕组N1和开关管V1形成回路。而在变换器副边,绕组N3的极性为上负下正。V3随vg3为高电平而开通。V4随vg4=0而关断,其体内寄生二极管反向关断。副边没有形成电流回路,无电流流过。变压器处于能量储存阶段。因此,电流i1=t线性增加,直至I1p=ton,变压器磁芯储能也增至(其中L1为绕组N1的电感量)。
当V1随vg1=0而关断时,其等效电路如图7(b)所示。变压器原边,由于V1关断,漏感储能引起较大反压加在V1两端,由于N1的匝数等于N2的匝数,当UN2=U时,V2的体内寄生二极管D2导通,箝位V1上的Uds为2U。N2此时作为复位绕组与D2构成通路,将变压器中的漏感储能回馈到电源U中;变压器副边,绕组N3此时的电压极性为上正下负,N3、V3、Cf、Zl和V4的体内寄生二极管D4形成回路。此时由D4承担高频整流任务,得到一高频直流脉冲,经Cf滤波后,向负载Zl输出低频电,完成该单个脉冲内变换器的能量。由SPWM调制原理可知,当频率调制比mf=足够大时,可忽略系统相移,在高频滤波电容Cf上,得到输出电压vo=Vosinω1t与vc同频同相。

2.4磁复位的要求

在高频变压器原边,当V1或V2接收SPWM脉冲列导通时,由于调制的频率很低,远远小于高频载波的频率,在低频调制信号的正半周或负半周内,施加在变压器绕组上的是同一方向的电压,变压器磁芯中的磁通将级进地逐渐增加,最终导致磁芯饱和,造成偏磁或单向磁化,导致很大的磁化电流而使电路无法正常工作。本文提出逐个脉冲磁复位,就是在每个高频脉冲之后及时采取措施,使每一个高频脉冲引起的磁通增加都回复到零,从而避免磁芯饱和。三角形法生成单极性SPWM波如图8所示(以控制信号为低频AC为例)。图中控制信号电压(调制波)vc=Vsinsinω1t(式中:ω1=2πf1,f1为逆变器输出电压要求的基波频率,也为调制频率;Vsin为控制信号电压的峰值),vt为等腰三角形载波电压,Vtri为载波电压的峰值,载波频率为fs,周期为=Ts。则幅度调制比ma=,频率调制比mf=。

当fsf1、mf为偶数,且vc与vt起始相位相等时,vt、vc的波形有如图8所示的关系,以下就这种情况进行讨论。

从时间tn-1到tn是vt的第n个载波周期

tn-1=(n-1)Ts

tn=nTs其顶点=(n-)Ts

故有等腰三角波vt的两段直线方程:当(n-1)Tst(n-)Ts时,

vt1=2Vtrifs[t-(n-1)Ts]当(n-)TstnTs时,

vt2=-2Vtrifs(t-nTs)



评论


相关推荐

技术专区

关闭