新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 无线激光通信光发射模块的研究

无线激光通信光发射模块的研究

作者:时间:2011-06-13来源:网络收藏

在下半部分电路中,将恒电流反馈或恒功率反馈控制信号通过运放放大,其中运放仍采用U10中的内部放大器,将该运放作为电压跟随器,输出信号进入运放U11A的正向输入端实现放大。U11B为运放减法电路,将上级放大输出信号与参考电压进行比较输出,VD10为稳压二极管提供稳定电压,调整滑动变阻器R77和R70构成的分压电路来实现比较器负输入端参考电压的设定。在该部分电路设计中,自动增益控制电路中的放大器选取带宽较窄、转换速度不能过快的放大器为宜。由于调制频率为kHz数量级,因此带宽过大会有很大的噪声干扰,为了使自动增益控制电压维持恒定,必须使该电压变换缓慢,所以选取转变速度较为缓慢的运算放大器。R61为恒电流模式中的采样电阻,即它将LD的电流转换为电压信号,通过反馈回路作为恒流控制信号,将该小信号放大供给后续反馈回路。
由于LD的输出功率与驱动电流有关,所以驱动电流的稳定性是决定LD的输出光功率稳定与否的一个关键因素。本设计采用了自动增益电路对参考电压Refl进行控制,即稳定了电流又起到了限定电流作用,而且结构简单实用。
2.2 温度控制(ATC)电路设计
器的输出受环境温度和本身温度变化的影响非常严重。主要是由于PN结的内部承受着相当大的电流密度和热耗散功率密度,不可避免地存在各种非辐射、自由载流子吸收等损耗。相当一部分注入电功率将转化为热量,引起器温度升高,从而影响其的输出。为了稳定输出功率和波长必须稳定激光二极管的温度,因而必须使用温度控制电路对激光器加以温度控制。
温度控制电路设计主要包括两部分:由负温度系数热敏电阻组成的桥式放大电路,该部分电路主要是采用OPA1177芯片和外围电路组成;另外是以由半导体热电制冷器的驱动控制组成电路,该部分电路主要采用专用热电制冷器控制芯片构成。温度控制原理为:装在激光器组件内的热敏电阻将激光二极管的温度变化转换成电信号,此小信号经过放大后送入TEC芯片电路,该电路将输入电压与参考电压比较后产生控制信号,控制热电致冷器的电流输入及方向,使其制冷或加热,从而改变激光二极管的温度,此温度变化就会反映到热敏电阻上,即构成了一个温度负反馈系统,动态地控制激光二极管的温度,从而起到稳定温度的作用,使温度稳定在设定值上。
2.2.1 热敏电阻前置放大电路设计
设计热敏电阻前置放大电路如图3所示。U14为将+5 V转变为+2.5 V的高精准参考电压源,该参考源有极低的噪声、低的温度系数,减少了该放大电路输出端由于电源引起的噪声干扰。R2、R3、R4和激光器内部负温度系数热敏电阻组成桥式放大电路的4个桥壁,当热敏电阻随温度变化阻值发生变化时,桥壁输出一个跟随温度变化的电压差,放大器输出的电压反映的正是放大了的热敏电阻阻值随温度变化情况。

本文引用地址:http://www.eepw.com.cn/article/156194.htm

c.jpg


2.2.2 热电制冷(TEC)控制电路设计
温度控制采用专用的TEC集成控制电路芯片,减少了传统所采用的积分微分电路,使得设计简单,电路调试方便,可以直接硬件实现。其关键控制电路设计如图4所示。

d.jpg


芯片引脚IN+为热敏电阻经过前置放大后的输出电压信号,R9和R12为分压电阻,为引脚IN-提供一个稳定的电压。引脚IN+端输入电压与引脚IN-端电压进行比较,当IN+端电压引脚大于IN-端引脚时,由该芯片资料知输出为制冷模式,反之为制热模式。该电路通过负温度系数热敏电阻输入端电压大小来控制整个反馈环路,当温度升高时热敏电阻阻值减小,由图3知,热敏电阻端电压降低,使得OPA1177输出比较电压升高,从而使输入到DRV953的IN+端电压升高,当该电压大于IN-端相电压时,使得该芯片输出电压翻转控制激光器半导体制冷器由制热模式转变为制冷模式,通过这样一个负反馈网络实现温度自动控制。同理,当温度降低时同样遵循该负反馈原理。通过设计合适的外部电路可使温度稳定精度至少控制在±0.1℃。



评论


相关推荐

技术专区

关闭