新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 可简化无线应用子系统负载管理的解决方案

可简化无线应用子系统负载管理的解决方案

作者:时间:2011-08-23来源:网络收藏

 电池供电系统中正越来越多地采用集成电源开关,旨在断开所有未用。这些应用包括 RF 功率放大器、无线局域网 (WLAN) 或蓝牙模块、LCD显示器等等,其目的是减少漏电流,或者通过一个稳定电源来配电。在诸如通信基础设施的非便携式应用中,人们现在更多地考虑使用开关,目的是要对系统总功耗进行优化,以符合节能或者绿色环保规定。

本文引用地址:http://www.eepw.com.cn/article/155861.htm

  本文将讨论在中对进行开关操作时您需要考虑的一些重要规范。我们还会介绍一些传统的,并表明如何使用集成开关来创建一种经过优化且易于实施的

  大多数便携式电池供电(移动电话、便携式消费类电子产品、笔记本电脑或者其他使用 WLAN、蓝牙或任何其他无线协议的便携式设备)以及越来越多在电磁场环境(例如:RF 微波等)下工作的非电池供电应用都面临如何其未用功耗的挑战。这样做的目的是在符合严格的空间和成本规定的同时优化其功耗预算。

  降低系统总功耗预算普遍使用的一种简单方法是关闭那些未使用的子系统。通过在电源轨上安装一个负载开关并在需要的时候连接和断开该电源轨可以轻松地实现上述方法。例如,我们可以在不使用的时候关闭某个 WLAN 电源模块,从而消除子系统漏电带来的电流损耗。使用同样的方法,越来越多的移动电话厂商往往会关闭闲置未使用的 RF 功率放大器,因为其存在大量的漏电流。在许多通信基础设施应用中,一些子系统会在夜间关闭以降低总漏电,因为夜间的数据处理要求并没有昼间那么高。

  负载开关离散实施一般包括一个功率 MOSFET(通常为一个 p-通道 FET,但也可根据应用需要使用 n-通道),其门极偏置以获得要求的性能。MOSFET 偏置电路通常包括一个 NMOS 以兼容低压控制信号,但为了提高功率 FET 的性能其构造更加复杂(例如:一个充电泵)。

  理想情况下,您应该有一个与其输入一致的负载开关输出。但是,在实际运行中,由于存在开关的寄生效应,输出信号改变了。

  要想设计一款基于负载开关的,下面是一些您需要考虑的最为重要的参数:

  · rON –通 FET 漏极到源极的导通状态电阻

  · IMAX 和 IPLS – 最大连续电流及最大脉冲电流

  · tRISE – 上升时间

  · VIH/VIL – 控制阈值

  · ICC 和 ISHUTDOWN – 静态电流和关断电流

  · 输出放电特性

  导通电阻明显是一个关键规范,因为它决定了流经 FET 的压降情况。低额定电流(200mA)的应用并不需要非常低的导通电阻,然而高电流的一些应用通常会要求较低的 rON FET,目的是最小化压降和相关功耗。流经开关的电压损耗情况可通过公式 来进行简单的计算。

  除了设计人员要对其进行开关操作的最大连续电流以外,考虑开关能够接受的最大脉冲电流也至关重要。在中,一些负载由温和的连续电流组成,而这些电流的后面紧跟着 RF 功率放大器带来的电流脉冲。例如,占空比为 12.5% 时,576μS 时间内 GSM/GPRS 突发传输会吸取高达 1.7A 的电流。因此,对设计进行一定调整以符合这类脉冲电流要求很重要。

  您需要考虑的另一个重要参数是开关首次开启时产生的浪涌电流。如果自由开启开关,同时也取决于输出电容的大小程度,开关输出会出现大浪涌电流带来的电源轨压降,而其最终将影响整个系统的功能性。避免出现这种浪涌电流的一种简单方法是延长开关的上升时间。这样便可缓慢地对输出电容器充电,从而降低电流峰值。为了控制功率 FET 的上升时间,可尝试使用一个外部电阻-电容网络。

  另外,开关从“开启”转换到“关闭”状态时,一些用户不喜欢电源轨浮动。因此,在关闭开关时,可利用一个附加晶体管来下拉接地输出。

  电池供电系统中正越来越多地采用集成电源开关,旨在断开所有未用子系统。这些应用包括 RF 功率放大器、无线局域网 (WLAN) 或蓝牙模块、LCD显示器等等,其目的是减少漏电流,或者通过一个稳定电源来配电。在诸如通信基础设施的非便携式应用中,人们现在更多地考虑使用负载开关,目的是要对系统总功耗进行优化,以符合节能或者绿色环保规定。

  本文将讨论在无线应用中对负载进行开关操作时您需要考虑的一些重要规范。我们还会介绍一些传统的,并表明如何使用集成负载开关来创建一种经过优化且易于实施的

  大多数便携式电池供电无线应用(移动电话、便携式消费类电子产品、笔记本电脑或者其他使用 WLAN、蓝牙或任何其他无线协议的便携式设备)以及越来越多在电磁场环境(例如:RF 微波子系统等)下工作的非电池供电应用都面临如何其未用子系统功耗的挑战。这样做的目的是在符合严格的空间和成本规定的同时优化其功耗预算。

  降低系统总功耗预算普遍使用的一种简单方法是关闭那些未使用的子系统。通过在电源轨上安装一个负载开关并在需要的时候连接和断开该电源轨可以轻松地实现上述方法。例如,我们可以在不使用的时候关闭某个 WLAN 电源模块,从而消除子系统漏电带来的电流损耗。使用同样的方法,越来越多的移动电话厂商往往会关闭闲置未使用的 RF 功率放大器,因为其存在大量的漏电流。在许多通信基础设施应用中,一些子系统会在夜间关闭以降低总漏电,因为夜间的数据处理要求并没有昼间那么高。

  负载开关离散实施一般包括一个功率 MOSFET(通常为一个 p-通道 FET,但也可根据应用需要使用 n-通道),其门极偏置以获得要求的性能。MOSFET 偏置电路通常包括一个 NMOS 以兼容低压控制信号,但为了提高功率 FET 的性能其构造更加复杂(例如:一个充电泵)。

  理想情况下,您应该有一个与其输入一致的负载开关输出。但是,在实际运行中,由于存在开关的寄生效应,输出信号改变了。

  要想设计一款基于负载开关的解决方案,下面是一些您需要考虑的最为重要的参数:

  · rON –通 FET 漏极到源极的导通状态电阻

  · IMAX 和 IPLS – 最大连续电流及最大脉冲电流

  · tRISE – 上升时间

  · VIH/VIL – 控制阈值

  · ICC 和 ISHUTDOWN – 静态电流和关断电流

  · 输出放电特性

  导通电阻明显是一个关键规范,因为它决定了流经 FET 的压降情况。低额定电流(200mA)的应用并不需要非常低的导通电阻,然而高电流的一些应用通常会要求较低的 rON FET,目的是最小化压降和相关功耗。流经开关的电压损耗情况可通过公式 来进行简单的计算。

  除了设计人员要对其进行开关操作的最大连续电流以外,考虑开关能够接受的最大脉冲电流也至关重要。在无线应用中,一些负载由温和的连续电流组成,而这些电流的后面紧跟着 RF 功率放大器带来的电流脉冲。例如,占空比为 12.5% 时,576μS 时间内 GSM/GPRS 突发传输会吸取高达 1.7A 的电流。因此,对设计进行一定调整以符合这类脉冲电流要求很重要。

  您需要考虑的另一个重要参数是开关首次开启时产生的浪涌电流。如果自由开启开关,同时也取决于输出电容的大小程度,开关输出会出现大浪涌电流带来的电源轨压降,而其最终将影响整个系统的功能性。避免出现这种浪涌电流的一种简单方法是延长开关的上升时间。这样便可缓慢地对输出电容器充电,从而降低电流峰值。为了控制功率 FET 的上升时间,可尝试使用一个外部电阻-电容网络。

  另外,开关从“开启”转换到“关闭”状态时,一些用户不喜欢电源轨浮动。因此,在关闭开关时,可利用一个附加晶体管来下拉接地输出。

  考虑过这些重要问题以后,对于一名经验丰富的设计人员来说,基于离散式半导体组件来实施一款对系统不同负载进行开关的解决方案就是一件十分简单的事情了。但是,从零开始实施这种解决方案可能会花费大量的时间。更为重要的是,从解决方案体积和成本的角度来看,其可能并非最佳。一个基本负载开关包括由一个功率 PMOS FET、两个 NMOS FET、一个负载电阻(让其兼容低压逻辑信号,并在闲置不用的时候对轨放电)以及一个控制上升时间和避免浪涌电流的 RC 时间常数组成。这种解决方案至少使用 6 个组件,并要求 8mm2 到 20 mm2 以上的空间,具体取决于导通电阻要求和所使用的封装类型。

  为了减少设计工作量并缩短产品上市时间,半导体供应商们推出了一些易于实施、成熟、完全合格的集成负载开关作为其系列产品的组成部分,例如:TPS22924C或者 TPS22902 等。诸如此类的 IC 均具有我们前面介绍的单个超小型封装特性。用户现在可以在减少 90% 板级空间需求的同时其子系统负载,如图 1 所示。

  

  图1:100-mOhm 和 10-mOhm 开关要求离散式解决方案与负载开关 IC 空间分析对比。

  结论

  使用集成负载开关,是实施分布式电源架构并优化子系统功耗管理的一种简单方法。因其灵活性、易于实现性,以及更少的组件数目和更高的总可靠性——最终带来更短的产品上市时间,集成负载开关解决了广大设计人员面临的诸多无线应用难题。

  参考文献

  如欲了解本文所述技术和产品的更多详情,敬请访问:http://focus.ti.com.cn/cn/paramsearch/docs/parametricsearch.tsp?family=analogfamilyId=1643uiTemplateId=NODE_STRY_PGE_T。



评论


相关推荐

技术专区

关闭