新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 基于ZigBee技术的红外人体探测系统测试

基于ZigBee技术的红外人体探测系统测试

作者:时间:2011-09-20来源:网络收藏

2.2.2 结果分析
中只有距离和功率的变化,我们知道无线信号在自由空间传输过程中随着传播距离的增大而产生一定的衰减,称为信道衰减。根据Friis自由空间方程(Friis Free-space Equation),则协调器距终端节点的距离为d(d>d0)的接收信号功率表达式为:
c.JPG
式(1)中Ptx为发送功率,Gt和Gr分别为终端节点和协调器的天线增益(Anterma Gains),d0称为远场距离,是一个取决于天线的参数距离,d是终端节点与协调器之间的距离,λ为信号的波长,L表示从发射到接收的损失。对于非自由空间的信号传播,接收信号的功率表达式为:
d.JPG
式(2)中r是信道损失指数(Path-loss Exponent),其取值在2~6之间。信道损失定义为信号的发射功率与接收功率的比值,即Ptx/Pr-cvd(d),上式也可以改写为对数形式:
e.JPG
式(3)称为对数距离信道损失,PL(d0)是在已知参考点的信道损失。
2.2.3 改进方法
从式(1)、式(2)以及式(3)可以看出,接收信号的功率与信号的传播距离有关,如果增大接收信号的功率,则信号的发送功率必须呈指数状增大。通常情况下,协调器的误码率是接收信号功率Pr的单调减函数。因此,要减小协调器的误码率就必须增大信号的发送功率,如在发射器的输出端和发射天线之间增加一个功率放大器,或者减小信号的传输距离。城市战应用中,通常使用电池供电,在电源不变的情况下天线增益和方向性是其两个重要的参数,可提高天线功率放大倍数。实战中协调器、路由节点可加装全向天线,扩大信号接收范围;终端节点加装定向天线,减少信道损失。从而增大信号接收发送的距离。
2.3 同频干扰
2.3.1 过程
城市战中雷达、无线电台频段一般不使用通用的2.4 GHz。的抗干扰测试主要针对同频干扰,即来自共用相同频段的其他的干扰。现代城市生活中,蓝牙、Wi-Fi、无线USB(WirelessUSB)、无绳电话和微波炉广泛使用,可能对造成同频干扰。因此在距离测试的基础上,分别选用蓝牙手机、无线路由器、无线USB、无绳电话和微波炉在工作状态下,对协调器节点进行干扰。不同距离上分别进行10次测试。测试结果如表2所示。可以看出无绳电话、微波炉两个大功率设备对的干扰性较大,其他设备对其干扰不明显。

本文引用地址:http://www.eepw.com.cn/article/155725.htm

f.JPG


2.3.2 结果分析
城市生活中,用于无线个人区域网(Wireless Personal Area Network,WPAN)范围的短距离无线通信技术标准得到了迅猛发展,2.4 GHz(2.4~2.483 GHz)ISM频段日益拥挤。各种信号带宽如图2所示。

g.JPG


ZigBee在2.4 GHz频段内具备强抗干扰能力,并不会对其他设备的工作造成威胁。具体分析如下:
1)ZigBee与蓝牙共存战场中同时使用了ZigBee和蓝牙技术,蓝牙采用FHSS并将2.4 GHzISM频段划分成79个1 MHz的信道,蓝牙设备以伪随机码方式在这79个信道间每秒钟跳1 600次。ZigBee是非跳频,所以蓝牙在79次通信中才有1次会和ZigBee的通信频率产生重叠,且将会迅速跳至另一个频率。而ZigBee对蓝牙系统的影响可以忽略不计。
2)ZigBee与Wi-Fi共存 Wi-Fi主要是针对高速率数据传输和无线接入局域网,与ZigBee技术面向的是完全不同的两个领域。由于ZigBee信号带宽只有3 MHz,相对于Wi-Fi的22 MHz带宽属于窄带干扰源,通过扩频技术IEEE 802.11b可以充分地抑制干扰信号。ZigBee设备天线的输出功率被限制在0 dBm (1mW)以下,相对于IEEE802.11b的20 dBm(100 mW)相差甚远,不足以构成干扰威胁。
3)ZigBee与无线USB共存 每一个WirelessUSB信道宽1 MHz,将2.4.GHz ISM频段分割成为79个1 MHz信道,具有频率捷变特性,它们虽采用“固定”信道,但如果最初信道的链路质量变得不理想,则会动态地改变信道,为减少干扰,WimMssUSB至少每50 ms检查一次信道的噪声水平,如果和ZigBee信道重叠,WirelessUSB主设备可以选择一个新信道,所以WirelessUSB完全可以和ZigBee系统和平共处。
4)ZigBee与无绳电话共存 2.4 GHz无绳电话不采用标准联网技术,多数2.4 GHz无绳电话均采用5~10 MHz的信道宽度,所有无绳电话都会在ISM频带产生出相当高的能量,所以它是许多RF系统的干扰源。如果无绳电话采用FHSS,因其占用更宽的信道(5~10 MHz),具有更高的功率。它发出的干扰可完全中断一个ZigBee网络的工作。如果无绳电话采用DSSS,则可将无绳电话与ZigBee系统所使用的信道配置成互不重叠,以消除干扰。
5)ZigBee与微波炉共存微波炉也是这个频带中最常见的干扰来源,而且是最难以预测和最分散的RF来源。每个微波炉输出的能源强度不尽相同,且在频带上的分布状况也不一样,某些微波炉阻隔电磁波的设计会优于其他几种。实验证明微波炉和ZigBee设备距离小于1 m时,约0.5%~2%的ZigBee数据帧被破坏,但当微波炉和ZigBee设备距离大于1 m时,微波炉的影响就基本不存在了。
2.3. 3 改进方法
通常正确选择信道,增大频偏以及和干扰源保持一定距离,可以保证ZigBee和其他设备的共存。在应用环境中尽量关闭或远离高频大功率设备等干扰源。战场中在敌方有意识的电子干扰情况下,可改变天线材质和结构,如采用高增益、方向性强的天线,或提高自身信号发射功率,改变自身信道。
2.4 灵敏度测试
2.4.1 测试过程
在抗干扰测试的基础上,对模块的灵敏度进了测试。为减少信号终端节点与协调器节点距离2 m,确保ZigBee信号稳定传送。系统加电后完成初始化组网过程,终端节点进入休眠状态。由于源受着装影响,为尽可能贴近战场环境,测试者着迷彩服,在红外人体探测模块前以走和跑两种战术动作移动,分别进行探测距离和探测角度测试。测试模拟场景如图3所示,场地内标示出主要的距离和角度,距离测试以人体到达探测模块正前方触发信号的距离为准。角度测试以人体刚进入探测区域即触发信号的角度为准。在不同的探测距离上分别进行了10次测试。

h.JPG



评论


相关推荐

技术专区

关闭