新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > RFID系统的数据传输编码分析

RFID系统的数据传输编码分析

作者:时间:2011-10-19来源:网络收藏

射频识别的结构与通信的基本模型相类似,满足了通信功能的基本要求。读写器和电子标签之间的构成了与基本通信模型相类似的结构。读写器与电子标签之间的需要三个主要的功能块,如图1所示。按读写器到电子标签的方向,是读写器(发送器)中的信号(信号处理)和调制器(载波电路),传输介质(信道),以及电子标签(接收器)中的解调器(载波回路)和信号译码(信号处理)。

本文引用地址:http://www.eepw.com.cn/article/155608.htm

射频识别系统的基本通信结构框图

  图1 射频识别的基本通信结构框图

  在图1中,信号系统的作用是对要传输的信息进行,以便传输信号能够尽可能最佳地与信道相匹配,这样的处理包括了对信息提供某种程度的保护,以防止信息受干扰或相碰撞,以及对某些信号特性的蓄意改变。调制器用于改变高频载波信号,即使载波信号的振幅、频率或相位与调制的基带信号相关。射频识别系统信道的传输介质为磁场(电感耦合)和电磁波(微波)。解调器的作用是解调获取信号,以便再生基带信号。信号译码的作用则是对从解调器传来的基带信号进行译码,恢复成原来的信息,并识别和纠正传输错误。

  1. 数据传输常用编码格式

  可以用不同形式的代码来表示二进制的“1”和“0”。射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(UnipolarHZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。

  (1)反向不归零(NRZ,NON Return Zero)编码

  反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,如图2所示。

  图2 NRZ编码

  此码型不宜传输,有以下原因:(a)有直流,一般信道难于传输零频附近的频率分量;(b)收端判决门限与信号功率有关,不方便使用;(G)不能直接用来提取位同步信号,因为在NRZ中不含位同步信号频率成分;(d)要求传输线有一根接地。

  (2)曼彻斯特(Manchester)编码

  曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,某位的值是由该位长度内半个位周期时电平的变化(上升/下降)来表示的,在半个位周期时的负跳变表示二进制“1”,半个位周期时的正跳变表示二进制“0″,如图3所示。

  图3 曼彻斯特编码

  曼彻斯特编码在采用负载波的负载调制或者反向散射调制时,通常用于从电子标签到读写器的数据传输,因为这有利于发现数据传输的错误。这是因为在位长度内,“没有变化”的状态是不允许的。当多个电子标签同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的副载波信号,由于该状态不允许,所以读写器利用该错误就可以判定碰撞发生的具体位置。

  (3)单极性归零(Unipolar RZ)编码

  单极性归零编码在第一个半个位周期中的高电平表示二进制“1”,而持续整个位周期内的低电平信号表示二进制“0”,如图4所示。单极性归零编码可用来提取位同步信号。

  图4 单极性归零编码


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭