新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 可编程增益跨阻放大器使光谱系统的动态范围达到最大

可编程增益跨阻放大器使光谱系统的动态范围达到最大

作者:LuisOrozco时间:2013-08-02来源:电子产品世界收藏

  计算TIA噪声

本文引用地址:http://www.eepw.com.cn/article/153287.htm

  跨阻有三个主要噪声源:运算的输入电压噪声、输入电流噪声和反馈电阻的约翰逊噪声。所有这些噪声源通常都表示为噪声密度。要将单位转换为V rms,须求出噪声功率(电压噪声密度的平方),然后对频率积分。一种精确但简单得多的方法是将噪声密度乘以等效噪声带宽(ENBW)的平方根。可以将的闭环带宽建模为主要由反馈电阻Rf和补偿电容Cf决定的一阶响应。使用稳定性示例中的规格,求得闭环带宽为:

  要将3 dB带宽转换为单极点系统中的ENBW,须乘以π/2:

  知道ENBW后,就可以求出反馈电阻造成的均方根噪声和运算放大器的电流噪声。电阻的约翰逊噪声直接出现在输出端,运算放大器的电流噪声经过反馈电阻后表现为输出电压。

  其中,k是波尔兹曼常数,T是温度(单位K)。

  最后一个来源是运算放大器的电压噪声。输出噪声等于输入噪声乘以噪声增益。考虑跨阻放大器噪声增益的最佳方式是从图7所示的反相放大器入手。

  此电路的噪声增益为:

  使用图4a所示的放大器模型,噪声增益为:

  其中,Zf是反馈电阻和电容的并联组合,Zin 是运算放大器输入电容与的分流电容和分流电阻的并联组合。

  此传递函数包含多个极点和零点,手工计算将非常繁琐。然而,使用上例中的值,我们可以进行粗略的近似估算。在接近DC的频率,电阻占主导地位,增益接近0 dB,因为二极管的分流电阻比反馈电阻大两个数量级。随着频率提高,电容的阻抗降低,开始成为增益的主导因素。由于从运算放大器反相引脚到地的总电容远大于反馈电容Cf,因此增益开始随着频率提高而提高。幸运的是,增益不会无限提高下去,因为反馈电容和电阻形成的极点会阻止增益提高,最终运算放大器的带宽会起作用,使增益开始滚降。

  图8显示了放大器的噪声增益与频率的关系,以及传递函数中各极点和零点的位置。

  正如电阻噪声密度,图8的输出噪声密度转换为电压噪声Vrms的最精确方法是求噪声密度的平方,对整个频谱积分,然后计算平方根。然而,检查响应发现,一种简单得多的方法仅产生很小的误差。对于大多数系统,第一零点和极点出现的频率相对低于第二极点。例如,使用表1和表2所示的规格,电路具有下列极点和零点:

  峰值噪声为:

  注意,与fp2相比,fz1 和 fp1出现在相对较低的频率。简单地假设输出噪声等于DC至fp2的高原噪声(公式11得出的N2),这将大大简化输出噪声所需的数学计算。

  在这一假设下,输出噪声等于输入噪声密度乘以高原增益,再乘以ENBW,即fp2 × π/2:

  知道所有三个噪声源的等效输出噪声后,就可以将其合并以求得系统总输出噪声。这三个噪声源彼此无关且为高斯噪声,因此可以求和方根(RSS),而不是将其相加。使用RSS合并多项时,如果一项比其他项大三个数量级左右,结果将以该项为主。

  图8的响应清楚地表明,运算放大器的噪声带宽远大于信号带宽。额外带宽没有其他作用,只会产生噪声,因此可以在输出端添加一个低通滤波器,衰减信号带宽以外的频率上的噪声。添加一个34 kHz带宽的单极点RC滤波器可将电压噪声从μVrms 降至 45 μVrms,总噪声从256 μVrms 降至仅52 μVrms。

  可编程增益级贡献的噪声

  如果在跨阻放大器之后添加一个PGA,输出端的噪声将是PGA噪声加上TIA噪声乘以额外增益的和。例如,假设应用需要1和10的增益,使用总输入噪声密度为10 nV/√Hz的PGA,那么PGA造成的输出噪声将是10 nV/√Hz或100 nV/√Hz。

电子管相关文章:电子管原理




评论


相关推荐

技术专区

关闭