新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 电容式触控电荷转移横向模式技术

电容式触控电荷转移横向模式技术

作者:时间:2011-01-02来源:网络收藏

  与之相反,感测是每个感测元素都采用两个电极。基本上,其电气行为与单端感测相同,但这些电路在发送/接收矩阵中采用电极数组创造触控屏幕功能。该方案的优点是其需要的布线较少,更甚之能同时识别和区分多个触点之间的差异,单端电路也可感测多个触点,不过由于讯号本身模糊,故不能区分。此外,方案还有速度快和功耗低的优势,因为其能同时测量一条驱动线路上的所有节点,所以可减少50%的采集周期数。这种双电极式结构具有自我屏蔽外部噪声的功能,在定功率级上可提高讯号稳定性,因此,量研科技(Quantum Research)一直将感测作为驱动触控屏幕的主要方案,利用高载模式采样、扩频调制及数字讯号处理等各种增强型的结合,促成抗噪声源干扰能力强,即使在恶劣环境下也较稳健的解决方案。

  在电气方面,横向模式感测的工作原理非常类似于T桥衰减器电路,使用者的手指实际上相当于一对之间的Cx项(图3)。手指触控屏幕表面吸收驱动电极和接收电极之间的耦合,电荷经由大量杂散路径返回至电路的接地,这会降低讯号的强度,而降低的程度很容易且可靠地测出。


图3:横向模式感测的工作原理

  尽管功耗极低,横向模式传感器却容易可穿过好几毫米厚的塑料、玻璃及其它材料,检测出使用多手指触摸,电极可由任何导电材料制作而成,如ITO,而且几乎任何尺寸和形状都可以。噪声消除算法可帮助这些传感器消除LCD等模块产生的噪声,通常毋需单独的屏蔽层,从而提高显示器的光传输性能,同时降低产品的建构成本和背光功率的要求,而厂商推出的QMatrix横向模式电路采用一种双斜坡转换形式,可确保电路对时间和温度的变化具有高度稳定性(图4)。


图4:QMatrix横向模式电路示意图

厂商发展的芯片透过与驱动脉冲同步开关的采样收集耦合到接收电极中的讯号,并利用一个脉冲串改进讯噪比,每个脉冲串的脉冲数量将直接影响电路的增益,因此,可方便调整电路增益,使其适合于不同的面板材料、按键尺寸和面板厚度。

  脉冲串产生的第一个斜坡是加到采样电容上的梯级波形讯号,脉冲串过后,驱动器把斜率电阻的参考端切换为高电平,对采样电容进行放电,直到将电荷用完,电压比较器检测出零交叉点为止,获得零交叉点所需的斜坡时间与X、Y电荷耦合成比例,并随用户手指触摸面板表面而减小(图5)。


图5:零交叉点所需的斜坡时间与X、Y电荷耦合比例图

  这种自动调零行为让电路对工作电压和电路参数,如Cs值的变化具有极强的适应能力。该项还提供潮湿抑制及固有的抗射频(RF)干扰能力,这是其它电容方法无法望其项背的部分,如面板表面若存在水珠之类的局部水膜,将使讯号耦合略微增加;而使用者手指的触摸则会使耦合减小。这意味着少量的潮湿会造成错误的方向变化,导致误触发,这是令其它解决方案感到头疼的问题。潮湿水膜的出现可能引开电荷,但由于水膜的建模模型是一个依赖于时间特性的分布式RC网络,电荷收集中门控时间的使用(微秒数量级或更短)抑制水膜的影响。



评论


相关推荐

技术专区

关闭