新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 多通道微量注射泵的设计与实现

多通道微量注射泵的设计与实现

作者:时间:2011-05-17来源:网络收藏

FPGA(即现场可编辑门阵列)采用的是Attera公司生产的CYCLONE II系列。EP2C5。FPGA采用独特的并行运算电路,在一个控制核心中可以加入多个控制对象进行独立驱动,控制性能不受到影响,各控制对象间不会产生干扰,避免了多对象实时控制中繁琐的时序问题,正好符合中同时控制多台泵的要求,一定程度上提高系统的集成度和抗干扰能力。同时FPGA具有硬件实时处理能力,每个硬件都例化在FPGA里面,等效于旋转编码器和压力传感器都成为了FPGA的一个硬件块,因此,其处理速度会非常快。
2.2 步进电机驱动模块
步进电机驱动采用三洋公司生产的THB7128驱动芯片,它具有高细分,大功率的特点。THB7218为双全桥MOSFET驱动,最高耐压为DC 40 V,大电流3.3 A(峰值),具有自动半流锁定功能,内置混合式衰减模式。相比其他驱动芯片,该苡片最突出的特点是最高达到1/128细分,因此电机运转非常平稳。THB7128电路图如图3所示。

本文引用地址:http://www.eepw.com.cn/article/150743.htm

d.JPG


2.3 传感器模块
2.3.1 旋转编码器
本系统的闭环控制采用了光电式旋转编码器。经过充分的市场调研,选择了日本OMRON公司生产的E6A2系统编码器。它结构简单,体积小,精度高,响应速度快,性能稳定,特别在高分辨率和大量程角速率/位移测量系统中,更具优越性。旋转编码器按照信号和原理分成增量式和绝对式两种,本系统采用增量式编码器。
它由主码盘、鉴相盘、光学系统和光电变换器组成。在主码盘(光电盘)周边上刻有节距相等的辐射状窄带,形成均匀分布的透明区和不透明区。鉴相盘与主码盘平行,并刻有a,b两组透检测窄缝,它们彼此错开1/4节距,以使A,B两个光电变换器的输出信号在相位上相差90°。工作时,鉴相盘静止,主码盘和转轴转动,光投射到主码盘和鉴相盘上,当主码盘上的透明区与窄缝对齐时,光电变换器输出电压最大,当不透明区与窄缝对齐时,电压最小。因此主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且变换器A,B相位差为90°。为了判断码盘的绝对位置,还必须设置一个基准点,即“零位标志槽”。码盘每转一圈,零位标志槽对应的光敏元件产生一个脉冲,称为“一转脉冲”。
2.3.2 压力传感器
本系统采用电阻应变式压力传感器。其工作原理是将一种电阻应变片粘贴在各种弹性敏感元件上,当弹性敏感元件受到外力的作用时将产生应变,电阻应变片将应变再转化为电阻的变化,然后电阻变化值通过数模转换成为压力变化值。图4为压力传感器的应用电路图,由4个压敏电阻组成惠斯通电桥电路,无差压时,电桥两臂平等,差压信号加到4个陶瓷压敏电阻上时,压敏电阻的阻值随差压变化,引起电桥失衡。电桥失衡引起电流的变化,通过ADS1242芯片进行数模转换,把模拟信号转化为数字信号,再传至主控芯片。

e.JPG



关键词: 实现 设计 注射 通道

评论


相关推荐

技术专区

关闭